SlideShare a Scribd company logo

PPT KEL 3 DAI - 007.pptx

About AI Classification type

PPT KEL 3 DAI - 007.pptx

1 of 25
Download to read offline
AI Classification
(Binary or Multiclass)
Kelompok 3
Nama Anggota :
1. Steven Adi Santoso
2. Yolan Dita Dewi Pramudita
3. Yusuf Firdaus Arifi
4. Yunita Kristanti Andriani
5. Dita Anggraeni
6. Sidiq Tri Kusuma
7. Indiarto Aji Begawan
8. Tica Laudita Nabilah
9. Veri Prasetiyo
10.Yahya Putra Pradana
11.Wahyu Nugraheni
12.Tasya Dwi Wicaksono
13.Cecep Wahyu Cahyana
Classification?
Sebuah metode untuk menyusun data secara
sistematis atau menurut beberapa aturan atau
kaidah yang telah ditetapkan.
Metode ini termasuk ke dalam supervised
learning dan dapat bekerja pada data
terstruktur maupun tidak terstruktur.
Di dalam Machine Learning banyak hal yang
bisa diklasifikasi seperti gambar, text, suara,
dan sebagainya.
Classification?
Ada beberapa tipe dalam proses klasifikasi yaitu :
Binary Classification Multiclass Classification
Binary Classification
Binary Classification
❏ Merupakan proses klasifikasi yang hanya menghasilkan 2 keluaran saja yaitu “Yes”
atau “No”, “Dog” atau “Cat”, “Spam” atau “Bukan Spam”, dan bisa juga “0” atau “1”
dimana label kelas “0” diberikan untuk keadaan normal/yes, dan label kelas “1” untuk
keadaan abnormal/no.
❏ Binary Classification bertujuan mencari boundary (batasan) yang dapat memisahkan
data secara optimal berdasarkan kelasnya.
❏ Khusus untuk Binary Classification, fungsi aktivasi yang digunakan pada umumnya
adalah sigmoid function.
Binary Classification
Ada beberapa algoritma yang biasa digunakan di proses Binary Classification yaitu :
1. Logistic Regression
2. K-Nearest Neighborhood
3. Decisions Tree
4. SVM (Support Vector Machine)
5. Naives Bayes
6. Two-Class Averaged Perceptron
Ad

Recommended

Klasifikasi - Algoritma Naive Bayes
Klasifikasi - Algoritma Naive Bayes Klasifikasi - Algoritma Naive Bayes
Klasifikasi - Algoritma Naive Bayes Elvi Rahmi
 
A152 prediksi-nasabah-potensial-menggunakan-metode-klasifikasi-pohon-biner
A152 prediksi-nasabah-potensial-menggunakan-metode-klasifikasi-pohon-binerA152 prediksi-nasabah-potensial-menggunakan-metode-klasifikasi-pohon-biner
A152 prediksi-nasabah-potensial-menggunakan-metode-klasifikasi-pohon-binerEpul Logariasmoú
 
Klasifikasi Data Mining.pptx
Klasifikasi Data Mining.pptxKlasifikasi Data Mining.pptx
Klasifikasi Data Mining.pptxAdam Superman
 
04-cara-pemakaian-weka.ppt
04-cara-pemakaian-weka.ppt04-cara-pemakaian-weka.ppt
04-cara-pemakaian-weka.pptPutrifitriasari1
 

More Related Content

Similar to PPT KEL 3 DAI - 007.pptx

Tutorial WEKA.ppt
Tutorial WEKA.pptTutorial WEKA.ppt
Tutorial WEKA.pptJurnalJTIM
 
Presentasi Implementasi Algoritma ID3
Presentasi Implementasi Algoritma ID3Presentasi Implementasi Algoritma ID3
Presentasi Implementasi Algoritma ID3Uliel Azmie
 
SENINAR TESIS ANDHITA DESSY W.
SENINAR TESIS ANDHITA DESSY W.SENINAR TESIS ANDHITA DESSY W.
SENINAR TESIS ANDHITA DESSY W.Dhita Djilan
 
A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803
A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803
A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803Alvian yudha Prawira
 
Pertemuan 3 Model Data Mining.pptx
Pertemuan 3 Model Data Mining.pptxPertemuan 3 Model Data Mining.pptx
Pertemuan 3 Model Data Mining.pptxArwansyahDipanegara
 
data mining
data miningdata mining
data miningdewi2093
 
BERPIKIR KOMPUTESIONAL 3.ppt
BERPIKIR KOMPUTESIONAL 3.pptBERPIKIR KOMPUTESIONAL 3.ppt
BERPIKIR KOMPUTESIONAL 3.pptAgusPurwadi20
 
Machine Learning dengan R
Machine Learning dengan RMachine Learning dengan R
Machine Learning dengan RMuhammad Rifqi
 
Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...
Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...
Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...Imel Aisyah Amini
 
Fuzzymulticriteriadecisionmaking
FuzzymulticriteriadecisionmakingFuzzymulticriteriadecisionmaking
FuzzymulticriteriadecisionmakingSeto Elkahfi
 

Similar to PPT KEL 3 DAI - 007.pptx (20)

Tutorial WEKA.ppt
Tutorial WEKA.pptTutorial WEKA.ppt
Tutorial WEKA.ppt
 
093-P01.pdf
093-P01.pdf093-P01.pdf
093-P01.pdf
 
Presentasi Implementasi Algoritma ID3
Presentasi Implementasi Algoritma ID3Presentasi Implementasi Algoritma ID3
Presentasi Implementasi Algoritma ID3
 
ML.docx
ML.docxML.docx
ML.docx
 
ML.docx
ML.docxML.docx
ML.docx
 
SENINAR TESIS ANDHITA DESSY W.
SENINAR TESIS ANDHITA DESSY W.SENINAR TESIS ANDHITA DESSY W.
SENINAR TESIS ANDHITA DESSY W.
 
Machine learning dan data mining
Machine learning dan data miningMachine learning dan data mining
Machine learning dan data mining
 
A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803
A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803
A11.2012.07112 alvian yudha prawira tgsdm2 _a11.4803
 
Algoritma Decision Tree - ID3
Algoritma Decision Tree - ID3Algoritma Decision Tree - ID3
Algoritma Decision Tree - ID3
 
Konsep data mining
Konsep data miningKonsep data mining
Konsep data mining
 
Pertemuan 3 Model Data Mining.pptx
Pertemuan 3 Model Data Mining.pptxPertemuan 3 Model Data Mining.pptx
Pertemuan 3 Model Data Mining.pptx
 
data mining
data miningdata mining
data mining
 
BERPIKIR KOMPUTESIONAL 3.ppt
BERPIKIR KOMPUTESIONAL 3.pptBERPIKIR KOMPUTESIONAL 3.ppt
BERPIKIR KOMPUTESIONAL 3.ppt
 
LN s10-machine vision-s2
LN s10-machine vision-s2LN s10-machine vision-s2
LN s10-machine vision-s2
 
Tugas 1 dm1
Tugas 1 dm1Tugas 1 dm1
Tugas 1 dm1
 
Cara pemakaian weka
Cara pemakaian wekaCara pemakaian weka
Cara pemakaian weka
 
Data mining 7
Data mining 7Data mining 7
Data mining 7
 
Machine Learning dengan R
Machine Learning dengan RMachine Learning dengan R
Machine Learning dengan R
 
Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...
Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...
Sim 12, imel aisyah, hapzi ali, sistem pendukung pengambilan keputusan,univer...
 
Fuzzymulticriteriadecisionmaking
FuzzymulticriteriadecisionmakingFuzzymulticriteriadecisionmaking
Fuzzymulticriteriadecisionmaking
 

PPT KEL 3 DAI - 007.pptx

  • 1. AI Classification (Binary or Multiclass) Kelompok 3 Nama Anggota : 1. Steven Adi Santoso 2. Yolan Dita Dewi Pramudita 3. Yusuf Firdaus Arifi 4. Yunita Kristanti Andriani 5. Dita Anggraeni 6. Sidiq Tri Kusuma 7. Indiarto Aji Begawan 8. Tica Laudita Nabilah 9. Veri Prasetiyo 10.Yahya Putra Pradana 11.Wahyu Nugraheni 12.Tasya Dwi Wicaksono 13.Cecep Wahyu Cahyana
  • 2. Classification? Sebuah metode untuk menyusun data secara sistematis atau menurut beberapa aturan atau kaidah yang telah ditetapkan. Metode ini termasuk ke dalam supervised learning dan dapat bekerja pada data terstruktur maupun tidak terstruktur. Di dalam Machine Learning banyak hal yang bisa diklasifikasi seperti gambar, text, suara, dan sebagainya.
  • 3. Classification? Ada beberapa tipe dalam proses klasifikasi yaitu : Binary Classification Multiclass Classification
  • 5. Binary Classification ❏ Merupakan proses klasifikasi yang hanya menghasilkan 2 keluaran saja yaitu “Yes” atau “No”, “Dog” atau “Cat”, “Spam” atau “Bukan Spam”, dan bisa juga “0” atau “1” dimana label kelas “0” diberikan untuk keadaan normal/yes, dan label kelas “1” untuk keadaan abnormal/no. ❏ Binary Classification bertujuan mencari boundary (batasan) yang dapat memisahkan data secara optimal berdasarkan kelasnya. ❏ Khusus untuk Binary Classification, fungsi aktivasi yang digunakan pada umumnya adalah sigmoid function.
  • 6. Binary Classification Ada beberapa algoritma yang biasa digunakan di proses Binary Classification yaitu : 1. Logistic Regression 2. K-Nearest Neighborhood 3. Decisions Tree 4. SVM (Support Vector Machine) 5. Naives Bayes 6. Two-Class Averaged Perceptron
  • 7. Logistic Regression ● Logistic Regression adalah sebuah algoritma klasifikasi untuk mencari hubungan antara fitur (input) diskrit/kontinu dengan probabilitas hasil output diskrit tertentu. ● Logistic Function adalah suatu fungsi yang dibentuk dengan menyamakan nilai Y pada Linear Function dengan nilai Y pada Sigmoid Function. Tujuan dari Logistic Function adalah merepresentasikan data-data yang kita miliki kedalam bentuk fungsi Sigmoid. ● Contoh penerapan : Prediksi tumor ganas atau tidak dari dataset breast cancer size.
  • 8. Decision Tree Alat pendukung keputusan yang menggunakan model keputusan seperti pohon dan kemungkinan konsekuensinya, termasuk hasil acara kebetulan, biaya sumber daya, dan utilitas. Contoh kasusnya adalah memprediksi spesies dari sebuah bunga iris
  • 9. K-Nearest Neighborhood Sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Data pembelajaran digambarkan ke ruang berdimensi banyak dengan tiap-tiap dimensi mewakili tiap ciri/fitur dari data. Contoh penerapan : Untuk clustering pengunjung toko berdasarkan gender, waktu belanja, atau asal daerah.
  • 10. SVM (Support Vector Machine) Algoritma klasifikasi untuk data linear dan non-linear. SVM menggunakan mapping non- linear untuk mentransformasikan training data awal ke dimensi yang lebih tinggi. Contoh penerapan : Prediksi terjadinya gempa berdasarkan geospatial data-based
  • 11. Naives Bayes Metode pembelajaran mesin yang memanfaatkan perhitungan probabilitas dan statistik yang memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya. Contoh penerapan :
  • 12. Two-Class Averaged Perceptron ● Merupakan versi sederhana dari neural network dan perluasan dari algoritma perceptron standar. ● Termasuk ke dalam model supervised learning, sehingga memerlukan sebuah tagged dataset. ● Dalam pendekatan ini, input diklasifikasikan ke dalam beberapa kemungkinan output berdasarkan fungsi linier, dan kemudian digabungkan dengan sekumpulan bobot yang diturunkan dari feature vector. Oleh karena itu dinamakan perceptron. ● Detail algoritma ini pada Azure ML Studio: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/two-class-averaged-perceptron
  • 14. Multiclass Classification Multiclass classification merupakan metode klasifikasi yang mengklasifikasikan instances ke dalam tiga kelas ataupun lebih. Multiclass classification menjawab pertanyaan-pertanyaan kompleks dengan beberapa jawaban yang mungkin. Seperti menjawab pertanyaan: “Apakah ini a atau b atau c?”
  • 15. Multiclass Classification Ada beberapa algoritma yang biasa digunakan di Multiclass Classification yaitu : 1. K-Nearest Neighbors 2. Decision Trees 3. Naive Bayes 4. Random Forest 5. Gradient Boosting 6. One-vs-All Multiclass 7. One-vs-One Multiclass
  • 16. K-Nearest Neighbors Case: Dimisalkan terdapat rumah berwarna hitam yang tidak memiliki alamat kota yang jelas, rumah tersebut terdapat di antara 3 kota bernama Phishing, Legitimate dan Suspicious. Cara menentukannya bisa dengan berikut: ● Tentukan beberapa titik rumah terdekat yang sudah memiliki alamat kota yang jelas. Gambar di samping terdapat 4 titik rumah terdekat. ● Dari 4 titik tersebut 3 rumah memiliki warna hijau dan 1 titik warna kuning. ● Dapat disimpulkan bahwa secara algoritma K- Nearest Neighbors titik rumah berwarna hitam tersebut masuk dalam kota Legitimate (Hijau)
  • 17. Decision Trees ❏ Konsep dari decision tree adalah mengubah data menjadi aturan-aturan keputusan. ❏ Manfaat utama dari penggunaan decision tree adalah kemampuannya untuk mem-break down proses pengambilan keputusan yang kompleks menjadi lebih simple, sehingga pengambil keputusan akan lebih menginterpretasikan solusi dari permasalahan. ❏ Decision tree juga berguna untuk mengeksplorasi data, menemukan hubungan tersembunyi antara sejumlah calon variabel input dengan sebuah variabel target. ❏ Nama lain dari decision tree adalah CART (Classification and Regression Tree). Dimana metode ini merupakan gabungan dari dua jenis pohon, yaitu classification tree dan juga regression tree. ❏ Jika variabel dependen yang dimiliki bertipe kategorik maka CART menghasilkan pohon klasifikasi (classification trees). Sedangkan jika variabel dependen yang dimiliki bertipe kontinu atau numerik maka CART menghasilkan pohon regresi (regression trees).
  • 18. Decision Trees Contoh pohon klasifikasi: Contoh pohon regresi:
  • 19. Naive Bayes - Naive Bayes adalah algoritma klasifikasi untuk masalah klasifikasi biner dan multikelas, dimana perhitungan probabilitas untuk setiap kelas disederhanakan agar perhitungannya dapat dilakukan. - Asumsi algoritmanya adalah independen bersyarat mengingat nilai kelas, yang mana atribut tidak berinteraksi - Bekerja sangat baik pada data yang asumsinya tidak berlaku - Perhitungan ini dapat dilakukan untuk setiap label kelas, dan label dengan probabilitas terbesar dapat dipilih sebagai klasifikasi untuk instance yang diberikan. Aturan keputusan ini disebut sebagai aturan keputusan maksimum a posteriori, atau MAP Contohnya : P(yi | x1, x2, …, xn) = P(x1|yi) * P(x2|yi) * … P(xn|yi) * P(yi)
  • 20. Random Forest Random forest merupakan algoritma yang digunakan untuk klasifikasi data dalam jumlah yang besar, yang mana merupakan kombinasi dari masing – masing pohon (tree) dari model Decision Tree yang baik, dan kemudian dikombinasikan ke dalam satu model. ● Pohon-pohon yang digunakan dalam Random Forest didasarkan pada pohon partisi rekursif biner dalam monograf. Pohon-pohon ini mempartisi ruang prediktor menggunakan urutan partisi biner ("splits") pada variabel individual.
  • 21. Gradient Boosting ❏ Gradient boosting adalah algoritma machine learning yang menggunakan ensamble dari decision tree untuk memprediksi nilai. ❏ Ensamble learning algorithm adalah algoritma yang menggunakan banyak simple machine learning model yang bekerja bersama untuk menghasilkan prediksi yang tepat. ❏ Cara kerja algoritma gradient boosting adalah membangun satu tree untuk menyesuaikan data, lalu tree berikutnya dibangun untuk mengurangi residual (error).
  • 22. One-vs-All Multiclass ● One-vs-All atau One-vs-Rest menggunakan algoritma binary classification untuk multiclass classification, sehingga bergantung pada binary/two-class classifier. ● Melibatkan pembagian multiclass dataset menjadi masalah-masalah binary classification. ● OvA membagi dataset menjadi satu dataset biner (binary dataset) untuk setiap kelas ● Binary classifier kemudian di-train atau dilatihkan pada setiap masalah-masalah binary classification dan prediksi dibuat menggunakan model dengan level confidence yang paling tinggi.
  • 23. One-vs-One Multiclass ● One-vs-One menggunakan algoritma binary classification untuk multiclass classification, sehingga sama seperti OvA, OvO juga bergantung pada binary/two-class classifier. ● OvO juga melibatkan pembagian multiclass dataset menjadi masalah-masalah binary classification. ● OvO membagi dataset menjadi satu dataset biner (binary dataset) untuk setiap kelas versus tiap-tiap kelas yang lain. ● OvO kurang sensitif untuk suatu dataset yang tak imbang dengan kompleksitas yang lebih besar.
  • 24. Contoh Penerapan Multiclass Classification Pada tabel di samping, terdapat dataset yang berisi informasi mengenai lebar dan tinggi sepal, serta lebar dan tinggi petal pada bunga iris. Data tersebut digunakan sebagai acuan untuk menentukan jenis dari bunga iris yang terdiri dari 3 macam, yaitu virginica, setosa, dan versicolor. Ketiga jenis bunga tersebut digunakan sebagai label (output) pada algoritma multiclass classification.