Successfully reported this slideshow.
Upcoming SlideShare
×

# Cosmic Adventure 5.2 Visonic Transform Without Motion

263 views

Published on

The case when v=0 not covered by Relativity. Delay timing happens normally in static cases. The static case leads to the universe in spatial and temporal layers.It is just the world we live in.

Published in: Science
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

### Cosmic Adventure 5.2 Visonic Transform Without Motion

1. 1. © ABCC Australia 2015 new-physics.com VISONIC TRANSFORM WITHOUT MOTION Cosmic Adventure 5.2
2. 2. © ABCC Australia 2015 new-physics.com In classical physics, we use two frames in relation to the observed object because we are dealing with relative motion. Observer 1 Observer 2 Object or Event
3. 3. © ABCC Australia 2015 new-physics.com The resultant equations are: System x: 𝑥′ = 𝑥 − 𝑠 𝑦′ = 𝑦 𝑧′ = 𝑧 𝑡′ = 𝑡 System x’: 𝑥 = 𝑥′ + 𝑠 𝑦 = 𝑦′ 𝑧 = 𝑧′ 𝑡 = 𝑡′ 𝑠 0 𝑥 𝑥’ 0′ 𝑃 𝑋 𝑌 Reference System Observer 1 Observer 2 Object or Event
4. 4. © ABCC Australia 2015 new-physics.com 𝑥′ = 𝑥 − 𝑠 𝑦′ = 𝑦 𝑧′ = 𝑧 𝑡′ = 𝑡 These equations cannot be transformed because no velocity is involved.
5. 5. © ABCC Australia 2015 new-physics.com But under this way of framing, the presence of light and the effects of its speed are not considered. 𝑠 0 𝑥 𝑥’ 0′ 𝑃 𝑋 𝑌 Reference System
6. 6. © ABCC Australia 2015 new-physics.com The Science of Visonics Visonics is a simple science. Its formulations are also basically very simple. It only involves an observer with his clock and the object as another clock. The coordinate system is equally simple and intuitive just like classical physics. There are two reasons for this apparent simplicity . . . 𝑠 = 𝑥 A B
7. 7. © ABCC Australia 2015 new-physics.com 𝑠 0 𝑥 𝑥’ 0′ 𝑃 𝑋 𝑌 0 𝑥 0′ 𝑋 𝑌 Coordinate System of Visonics Firstly, the positions and motions are linear within the system. The observers and object are related to each other directly. So we can incorporate the object into P with the second reference frame, that is, the second reference frame becomes the object itself. This produces a single frame. Visonics or Classical System Relativistic System ObjectObserver
8. 8. © ABCC Australia 2015 new-physics.com 𝑠 = 𝑥 A B Symmetry of Relative Motion Secondly, the two systems are symmetrical in every aspect. They are geometrically the reversal of each other when the coordinates are also reversed. So one frame is sufficient to represent the entire situation. 𝑠 = 𝑥 ABRight-handed System [Reverse System] Left-handed System
9. 9. © ABCC Australia 2015 new-physics.com 𝑠 = 𝑥 A B So in visonics, we only need one reference for our discussion - In the static state, they are separated by a distance s. It is the simplest coordinate representation in classical physics.
10. 10. © ABCC Australia 2015 new-physics.com Light & Vision We can see an object because its light brings the images to our eyes. Light is the visual image carrier in our lives.
11. 11. © ABCC Australia 2015 new-physics.com Light in between But since light has a limited speed, it take time to travel. This delay in time in not discernible in our daily life because the speed of light is exceedingly high. But in the celestial scale, the delay becomes obvious. For example, light will take eight minutes to travel from the sun to the earth.
12. 12. © ABCC Australia 2015 new-physics.com As another example, the galaxy of Andromeda is 2,538,000 light years away from the earth. A light year is the time taken for light to travel in one year – covering about 9 trillion kilometers (about 6 trillion miles). This is the time in years needed for its light to reach earth. You Earth people had made measurements of various objects as shown in the following table . . . 2,538,000 𝐿𝑖𝑔ℎ𝑡 𝑦𝑒𝑎𝑟𝑠
13. 13. © ABCC Australia 2015 new-physics.com Distance Duration Time Units 1 foot 1.017 nanoseconds (10-9) 1 meter 3.335 nanoseconds (10-9) 1 kilometre 3.3 microseconds (10-6) 1 mile 5.4 microseconds (10-6) Around Earth's equator 134 micro seconds Earth to the Moon 1.3 seconds Earth to the Sun 8.3 minutes Across the Milky Way 100,000 years ± 1,400 years Earth to the centre of Milky Way 26,000 years ± 1,400 years Earth to the Andromeda Galaxy 2.5 million years (106) Earth to the visible edge of the observable Universe 46.5 million years (109) One light year 1.0 year One parsec 3.26 years
14. 14. © ABCC Australia 2015 new-physics.com We can take Earth and Jupiter for a practical example. The mean distance between Earth and Jupiter is about 6 light-hours 𝑠 = 6 light-hours
15. 15. © ABCC Australia 2015 new-physics.com Clock reading on Earth after 6 hours Clock image from Jupiter 4th hours0 hours 2nd hours 6th hours 6th hours What the Earth will see is that a Jupiter clock is running 6 hours late.
16. 16. © ABCC Australia 2015 new-physics.com Equation for Time Delay So the clock-reading difference between the clock on earth and the clock on Jupiter is: 𝑇𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑡) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠) /𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡(𝑡) 𝑡 = 𝑠/𝑐 Earth clock [Real object] Jupiter clock [Image only]
17. 17. © ABCC Australia 2015 new-physics.com Galilean Transform I can see the difference now. This is the result after taking the speed of light into consideration. Galilean transform is Galilean because in my time light was thought to have an infinite speed. If light has an infinite speed, then I will see everything at exactly the same time as the object itself. There can be no transformation due to the velocity of light.
18. 18. © ABCC Australia 2015 new-physics.com Time Spheres As result of the finite speed of light, we are actually living in a world made up by layers of time spheres. In the smaller scale, we have our immediate environment. 𝑛𝑠 = 𝑛𝑎𝑛𝑜 𝑠𝑒𝑐𝑜𝑛𝑑
19. 19. © ABCC Australia 2015 new-physics.com Time Spheres In the larger scale, we have the universe. The scale is governed by the same formula: 𝑠 = 𝑐𝑡
20. 20. © ABCC Australia 2015 new-physics.com So there is this basic difference between Relativity and Visonics. Visonics concentrates on the transmission of images by light. Relativity emphasizes on the transformation of coordinate frames in conjunction with the constant speed of light.
21. 21. © ABCC Australia 2015 new-physics.com Visonic Treatment 1. The job is to find the effect of light under observation in the classical environment. 2. Only one coordinate system is used. 1. The aim is to find the relationship between the frames involving the super-speed of light in the relativistic conditions. 2. Two or more reference systems are required. Relativistic Treatment 0 𝑥 0′ 𝑋 Visonics or Classical System ObjectObserver 𝑠 0 𝑥 𝑥’ 0′ 𝑃 𝑋 𝑌 Relativistic System
22. 22. © ABCC Australia 2015 new-physics.com Relativity Invalid at Low Speed In the case of observer and object at rest, the relativistic equations are reduced to the classical ones. According to the theory of Special Relativity, these classical ones are only applies when the object or observer are moving at low speed. But in actual fact, they are misconceived. No matter how slow is the object, the discrepancies are still there. 𝑥′′ = 𝑥′ − 𝑣𝑡 1 − 𝑣2 𝑐2 → 𝑥′ 𝑡′′ = 𝑡′ − 𝑣𝑥′/𝑐2 1 − 𝑣2 𝑐2 → 𝑡′
23. 23. © ABCC Australia 2015 new-physics.com Visonic Equations 𝑥′ = 𝑥 𝑡′ = 𝑡 − 𝑠/𝑐 𝑥′′ = 𝑥′ − 𝑣𝑡 1 − 𝑣2 𝑐2 → 𝑥′ 𝑡′′ = 𝑡′ − 𝑣𝑥′/𝑐2 1 − 𝑣2 𝑐2 → 𝑡′ Relativistic Equations Earth clock [Real object] Jupiter clock [Image]
24. 24. © ABCC Australia 2015 new-physics.com . . . so this phenomenon of delay at rest is not covered by the theory of relativity. I see your point. But this is not my true meaning of relativity. Let’s see how motion will affect the entire situation.
25. 25. © ABCC Australia 2015 new-physics.com FRAMES IN MOTION To be continued on Cosmic Adventure 5.3