Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Build Your Own VR Display Course - SIGGRAPH 2017: Part 1

Introduction, overview of course, details of all software and hardware used for this course

Related Books

Free with a 30 day trial from Scribd

See all
  • Be the first to comment

  • Be the first to like this

Build Your Own VR Display Course - SIGGRAPH 2017: Part 1

  1. 1. Build Your Own VR Display An Introduction to VR Display Systems for Hobbyists and Educators Gordon Wetzstein Robert Konrad Nitish Padmanaban Hayato Ikoma
  2. 2. vir·tu·al re·al·i·ty vərCH(əw)əl rē‘alədē the computer-generated simulation of a three-dimensional image or environment that can be interacted with in a seemingly real or physical way by a person using special electronic equipment, such as a helmet with a screen inside or gloves fitted with sensors.
  3. 3. VPL Research
  4. 4. Other Applications of VR • architecture walkthroughs • remote operation of vehicles (e.g., drone racing!) • education • communication • virtual travel to expensive or risky environments • training surgeons, pilots,... • create empathy • … VR is a new medium ...
  5. 5. a trip down the rabbit hole
  6. 6. National Academy of Engineering “Enhance Virtual Reality” is 1 of 14 NAE grand challenges for engineering in the 21st century image from NAE
  7. 7. Exciting Engineering Aspects of VR/AR • CPU, GPU • IPU, DPU? • sensors & imaging • computer vision • scene understanding • human perception • displays: visual, auditory, vestibular, haptic, …• VR cameras • cloud computing • shared experiences • HCI • compression, streaming images from facebook, Microsoft
  8. 8. Personal Computer e.g. Commodore PET 1983 Laptop e.g. Apple MacBook Smartphone e.g. Google Pixel AR/VR e.g. Microsoft Hololens ???
  9. 9. A Brief History of Virtual Reality 1838 1968 2012-2017 Stereoscopes Wheatstone, Brewster, … VR & AR Ivan Sutherland VR explosion Oculus, Sony, HTC, MS, … Nintendo Virtual Boy 1995 ???
  10. 10. Ivan Sutherland’s HMD • optical see-through AR, including: • displays (2x 1” CRTs) • rendering • head tracking • interaction • model generation I. Sutherland “A head-mounted three-dimensional display”, Fall Joint Computer Conference 1968
  11. 11. Nintendo Virtual Boy • 770,000 units sold, commercial failure – judge for yourself Game: Red Alarm
  12. 12. = ?
  13. 13. 1968 1980s 2000s electronic / digital HCI / haptics low cost, high-res, low-latency!
  14. 14. • Samsung 5.7” AMOLED: 1920x1080px, 75Hz • 2 sets of lenses (for different prescriptions) • InvenSense 6-axis IMU • ARM Cortex-M3 MCU • … https://www.ifixit.com/Teardown/Oculus+Rift+Development+Kit+2+Teardown/27613 OculusDK2Teardown key factors: low latency & wide fov!
  15. 15. Field of View!
  16. 16. Simple Magnifier-type VR Displays
  17. 17. See-through AR Displays
  18. 18. Google Glass
  19. 19. See-through AR Displays - Pepper’s Ghost 1862
  20. 20. See-through AR Displays: Waveguides Microsoft Hololens
  21. 21. Gordon Wetzstein Robert Konrad Nitish Padmanaban Hayato Ikoma Who We Are Assistant Professor of EE/CS Research Assistants and TAs of Stanford VR Course
  22. 22. Some Projects We’ve Worked On “Layered 3D” SIGGRAPH 2011, “Polarization Fields” SIGGRAPH Asia 2011, “Tensor Displays” SIGGRAPH 2012, “Focus 3D” ToG 2013, “Eyeglasses-free Displays” SIGGRAPH 2014, “Light Field Projection” SIGGRAPH 2015, …
  23. 23. Some Projects We’ve Worked On F. Huang, K. Chen, G. Wetzstein “The Light Field Stereoscope”, SIGGRAPH 2015 R. Konrad, E. Cooper, G. Wetzstein “Focus-tunable and Monovision Near-eye Displays”, SIGCHI 2016
  24. 24. Some Projects We’ve Worked On R. Konrad, N. Padmanaban, K. Molner, E. Cooper, G. Wetzstein “Accommodation- invariant Computational Near-eye Displays”, SIGGRAPH 2017  SIGGRAPH 2017 Paper, Wed 9-10:30am, Room 150/151
  25. 25. Some Projects We’ve Worked On N. Padmanaban, R. Konrad, T. Stramer, E. Cooper, G. Wetzstein “Optimizing VR for All Users Through Gaze-contingent Focus Displays”, PNAS 2017  SIGGRAPH 2017 Talk, Thu 3:45-5:15pm, Room 152
  26. 26. Stanford EE 267
  27. 27. About EE 267 • experimental hands-on class at Stanford, taught twice • lectures + assignments = one big project – build your own VR HMD • all hardware provided, but must return at the end • enrollment limited, because it’s a lab-based class and we only have limited hardware kits
  28. 28. About EE 267 • learning goals: • fundamental concepts of VR and Computer Graphics • implement software + hardware of a head mounted display • prerequisites: programming (C/C++, JavaScript), linear algebra • students: 80 undergrad + grad, teams of 2 get a hardware kit
  29. 29. About EE 267 Lecture slides, course notes, assignments, detailed grading breakdown, open source hardware, … available on http://stanford.edu/class/ee267/
  30. 30. SIGGRAPH Course Overview • Introduction and Overview, Gordon Wetzstein, 5 min • Overview of DIY Hardware and Software, Gordon Wetzstein, 10 min • Graphics Pipeline, Stereo Rendering, Lens Distortion, Robert Konrad, 60 min • IMUs, Orientation & Position Tracking, Sensor Fusion, Gordon Wetzstein, 60 min • Spatial Sound, Nitish Padmanaban, 30 min • Cinematic VR – Build your own VR camera, Robert Konrad, 25 min • Discussion and Q&A, All presenters, 5 min • Live Demos throughout the course: Hayato Ikoma More details & course notes: http://stanford.edu/class/ee267/
  31. 31. Build Your Own VR Display Overview of DIY Hardware and Software Gordon Wetzstein Stanford University stanford.edu/class/ee267/
  32. 32. HMD Housing & Lenses 6” LCD & HDMI Driver Board VRduino Flex Sensors Vibration Motors IMU & Teensy HDMI Cable 2x USB Cable
  33. 33. HMD Housing and Lenses • View-Master VR Starter Kit ($15- 20) or Deluxe VR Viewer ($23) • implements Google Cardboard 1.0/2.0 • very durable – protect flimsy LCDs • may need to drill additional holes
  34. 34. Display • Topfoison LCDs: • 1080p - $90 • 1440p (2K) - $100 • HDMI driver boards included • no audio jack! doesn’t fit in housing • super easy to use as external monitor on desktop or laptop
  35. 35. Display • same LCD you’ll find in many smartphones • reasonably robust (only broke a few) • ideally use OLEDs, but haven’t found any low-cost ones similar to these LCDs
  36. 36. Strobing the Display Backlight • for low-persistence applications, can strobe LED backlight at 500Hz • custom PCB with Arduino – email us if you’re interested
  37. 37. VRduino • Arduino-based open source platform for: • orientation tracking • positional tracking • interfacing with other IO devices • custom-design for EE 267 by Keenan Molner • all HW-related files on course website
  38. 38. VRduino • Teensy 3.2 microcontroller (48 MHz, $20) for all processing & IO • InvenSense 9250 IMU (9- DOF, $6) for orientation tracking • Triad photodiodes & precondition circuit ($1) for position tracking with HTC Lighthouse
  39. 39. VRduino
  40. 40. VRduino IMU Teensy 3.2
  41. 41. VRduino Lighthouse Select
  42. 42. VRduino Photodiode 0 Photodiode 1 Photodiode 2 Photodiode 3
  43. 43. About EE 267 – VRduino IMU Teensy 3.2 4 photodiodes other GPIO pins
  44. 44. VRduino x=42mm, y=25mm x y x=42mm, y=-25mm x=-42mm, y=25mm x=-42mm, y=-25mm
  45. 45. VRduino pins 20,21 pins 22,23 pins 9,10 pins 5,6
  46. 46. VRduino SCL: pin 19 SDA: pin 18
  47. 47. VRduino Pin Breakout
  48. 48. Student-built Input Devices • data gloves with flex sensors • different types of controllers with tactile feedback via vibration motors • all connected to VRduino GPIO pins images from Adafruit.com
  49. 49. Live Demo

×