-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This talk aims to dive into technical details in machine learning model development, implementation and values it bring to Monsanto breeding pipeline. We genotype over 100 million seeds a year in order to save field resources and product development cycle time. Automation and high throughput production from the lab becomes key to R&D success. In house predictive model development incorporated random forest ensemble based approach with additional features derived from gaussian mixture model. The results show over 95% accuracy with less than 1% false positives/negatives. Model is highly generalizable with over 10 million data points being trained and tested on. The model also offers probabilistic approach to present genotypes in a more meaningful way and help enhanced downstream genomics analyses. The talk targets audience who are in breeding, genetics, molecular biology, and data scientists who are interested in practical applications.
Be the first to like this
Login to see the comments