-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Looking to implement Hadoop but haven’t pulled the trigger yet? You are not alone. Many companies have heard the hype about how Hadoop can solve the challenges presented by big data, but few have actually implemented it. What’s preventing them from taking the plunge? Can it be done in small steps to ensure project success?
This session will discuss some of the items to consider when getting started with Hadoop and how to go about making the decision to move to the de facto big data platform. Starting small can be a good approach when your company is learning the basics and deciding what direction to take. There is no need to invest large amounts of time and money up front if a proof of concept is all you aim to provide. Using well known data sets on virtual machines can provide a low cost and effort implementation to know if your big data journey will be successful with Hadoop.
Be the first to like this
Login to see the comments