Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This technical session provides a hands-on introduction to TensorFlow using Keras in the Python programming language. TensorFlow is Google’s scalable, distributed, GPU-powered compute graph engine that machine learning practitioners used for deep learning. Keras provides a Python-based API that makes it easy to create well-known types of neural networks in TensorFlow. Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to train neural networks of much greater complexity. Deep learning allows a model to learn hierarchies of information in a way that is similar to the function of the human brain.