Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This talk will go over how to build an end-to-end data processing system in Python, from data ingest, to data analytics, to machine learning, to user presentation. Developments in old and new tools have made this particularly possible today. The talk in particular will talk about Airflow for process workflows, PySpark for data processing, Python data science libraries for machine learning and advanced analytics, and building agile microservices in Python.
System architects, software engineers, data scientists, and business leaders can all benefit from attending the talk. They should learn how to build more agile data processing systems and take away some ideas on how their data systems could be simpler and more powerful.
Login to see the comments