Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

DEEP LEARNING SUMMIT ASIA 2016

154 views

Published on

How Deep Learning and Drones Can Save the World from Asteroids?

http://tinyurl.com/jpzh6g2

Published in: Science
  • Be the first to comment

  • Be the first to like this

DEEP LEARNING SUMMIT ASIA 2016

  1. 1. 1 How Deep Learning and Drones Can Save the World from Asteroids? @SravanthiSinha
  2. 2. Are asteroids a threat to the Earth? @SravanthiSinha
  3. 3. 4 What’s an Asteroid? Credit: NASA, JAXA and ESA (montage by Emily Lakdawalla)
  4. 4. 5 Impact of Itokawa @SravanthiSinha
  5. 5. Where do they live?
  6. 6. 7 What's the solution and why find meteorites? @SravanthiSinha
  7. 7. 8 Composition affects threat assessment and deflection technologies Why find meteorites? @SravanthiSinha
  8. 8. - It takes 100 man hours to find one meteorite - To increase meteorite finds, the efficiency must be increased - We have trajectories, but finding meteorites is difficult 9 Current approach to find meteorites @SravanthiSinha
  9. 9. Use a drone combined with Deep learning to increase fresh meteorite finds 10 @SravanthiSinha
  10. 10. 11 Why Deep Learning is the best solution? @SravanthiSinha
  11. 11. 12 Traditional Computer Vision - Anomaly Detection @SravanthiSinha
  12. 12. 13 Data-Set @SravanthiSinha
  13. 13. 14 2 wrong classifications out of 17000 patches! Our Deep Learning Solution @SravanthiSinha
  14. 14. 15 2 correctly labelled meteorites… 124 incorrectly labelled patches… out of 17000 patches Our Deep Learning Solution @SravanthiSinha
  15. 15. 16 Challenges @SravanthiSinha
  16. 16. Unbalanced data! 17 Dataset Creation
  17. 17. 18 How we solved the problem? @SravanthiSinha
  18. 18. rotations 19 reflection resolution brightness saturation Our meteorite pictures 320 Internet meteorites in field 280 Internet meteorites photoshopped 35 635 images... tiny dataset ! 32 augmentations per image 21000 images... respectable dataset ! Dataset Augmentation @SravanthiSinha
  19. 19. 20 ~15 million natural images Leveraging Big Data @SravanthiSinha
  20. 20. 21 GoogLeNet AlexNet ~6 million parameters ~61 million parameters Leveraging Pre-trained Networks @SravanthiSinha
  21. 21. 22 Model Ensembling @SravanthiSinha
  22. 22. 23 Hardware / Software Each model ~2 hours to train On a CPU it would be ~1 week ! @SravanthiSinha
  23. 23. 24 DEMO @SravanthiSinha
  24. 24. 25 The ADELIE Meteorite Hunter
  25. 25. 26 The ADELIE Meteorite Hunter
  26. 26. 27 The ADELIE Meteorite Hunter Functionality in place
  27. 27. 28 The ADELIE Meteorite Hunter
  28. 28. 29 The ADELIE Meteorite Hunter
  29. 29. 30 The ADELIE Meteorite Hunter
  30. 30. 31 The ADELIE Meteorite Hunter
  31. 31. 32 The ADELIE Meteorite Hunter
  32. 32. 33 The ADELIE Meteorite Hunter
  33. 33. 34 The ADELIE Meteorite Hunter
  34. 34. 35 The ADELIE Meteorite Hunter Archive images for future learning.
  35. 35. 36 The ADELIE Meteorite Hunter
  36. 36. 37 The ADELIE Meteorite Hunter
  37. 37. 38 The ADELIE Meteorite Hunter
  38. 38. Image processing ○ Faster inference time ○ Weak classifier ○ Reduce false positives Improved hardware ○ Autonomous height control (LIDAR) ○ Better camera resolution ○ Longer battery life ○ Additional sensors (IR, hyperspectral?, etc.) 39 @SravanthiSinha Ongoing work..
  39. 39. Amar Shah - Data Scientist, PhD Student, Cambridge Robert Citron - Planetary Scientist, PhD Student, UC Berkeley Christopher Watkins, Data Scientist, PhD Student, CSIRO, Melbourne Sravanthi Sinha, Full-Stack Software Developer, Holberton School, San Francisco Peter Jenniskens, Project Mentor, Meteor Astronomer, SETI Institute 40 Team @SravanthiSinha

×