Big data remains a rapidly evolving field with new applications and infrastructure appearing every year. In this talk, I’ll cover new trends in 2016 / 2017 and how Apache Spark is moving to meet them. In particular, I’ll talk about work Databricks is doing to make Apache Spark interact better with native code (e.g. deep learning libraries), support heterogeneous hardware, and simplify production data pipelines in both streaming and batch settings through Structured Streaming.