Getting Ready to use Redis with Apache Spark is a technical tutorial designed to address integrating Redis with an Apache Spark deployment to increase the performance of serving complex decision models. To set the context for the session, we start with a quick introduction to Redis and the capabilities Redis provides. We cover the basic data types provided by Redis and cover the module system. Using an ad serving use-case, we look at how Redis can improve the performance and reduce the cost of using complex ML-models in production. Attendees will be guided through the key steps of setting up and integrating Redis with Spark, including how to train a model using Spark then load and serve it using Redis, as well as how to work with the Spark Redis module. The capabilities of the Redis Machine Learning Module (redis-ml) will be discussed focusing primarily on decision trees and regression (linear and logistic) with code examples to demonstrate how to use these feature. At the end of the session, developers should feel confident building a prototype/proof-of-concept application using Redis and Spark. Attendees will understand how Redis complements Spark and how to use Redis to serve complex, ML-models with high performance.