Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Prof. dr. Simona CavaluFaculty of Medicine and PharmacyUniversity of OradeaROMANIA
Motivation 
As the average age of population grows, the need for medical devices to replace damaged or worn tissues incre...
Theidealceramicisahighperformancebiocompositethatcombinestheexcellentmaterialpropertiesofaluminaintermsofchemicalstability...
Bioceramicinteraction with living tissue 
Bioinert 
Bioactive 
Surface modifications and post –synthesis treatments for be...
Surface covering layers/coatings 
Biological 
response 
Cells viability 
Cells attachment 
Cells proliferation 
Surface mo...
Goal 
Inthepresentstudywearefocusedonthepossiblebeneficialeffectoforganiccoating(fibrinogen)andinorganictreatment(fluorin...
Materials 
Composition: 80%Al2O3–20%YSZ with 5%TiO2addition 
Spark plasma sintering method at 1350-1400◦C. 
Structural cha...
FTIR spectroscopy 
1200 1000 800 600 400 
0 
3 
5 
x 
Al 
2 
O 
3 
80Al 
2 
O 
3 
·20ZrO 
2 
·xTiO 
2 
Intensity/ a.u. 
Wa...
XRD patterns 
Al2O3 
80Al2O3-20YSZ 
80Al2O3-20YSZ +5TiO2 
No monoclinic phase ZrO2
SEM 
80Al2O3-20YSZ 
80Al2O3-20YSZ with 5% TiO2 
Al2O3
Texture of protein (fibrinogen) coating on alumina/zirconiaceramics- electrodeposition
Native Fibr 
Fibr/specimen 1 
Fibr/specimen 2 
Native Fibr 
Fibr/specimen 1 
Fibr/specimen 2 
FTIR spectroscopy and deconv...
Surface treatment with SnF2and NaBF4-ATR FTIR evidence 
Fig. 1 ATR FTIR spectra of SnF2 and NaBF4 powders as received from...
Surface treatment- XPS evidence 
1200 1000 800 600 400 200 0 
F 1s 
Al 2s 
Zr 3d 
Al 2p 
C 1s 
N 1s 
O 1s 
Sn 4d Zr 4p F 2...
In vitro test: cells culture 
Human fibroblast (HLF) seeded in a concentration of 2x104/cm2 cells on the surface of each ...
Fibroblasts adherence/proliferation evidence by confocalmicroscopySnF2NaBF4 
24 h 
7 hSnF2NaBF4 
7 h 
24 h 
3 h
SEM –initial stage of adherence 3hSnF2NaBF4
7hNaBF4SnF2
24 hSnF2NaBF4
MTTassayresultsshowingviablefibroblastscellswithrespecttocontrolandsurfacetreatedalumina/zirconiaspecimensafter3,7and24hou...
In vivo tests: animal model (rabbit) 
Implant 1-SnF2 treatment 
Implant 2-NaBF4 treatment 
Implant 3-Fibrinogen
50μm 
Implant 
site 
Haversiancanal 
New bone proliferation 
Interface bone-implant 
Haversiancanal 
New bone proliferatio...
Ca/P= 1.62- 1.80 
Haversian canal 
Bone morphology after 4 and 
8 weeks post -surgery 
4 weeks 
8 weeks 
EDAX
XRD spectrum of the femoral bone 
0 20 40 60 80 100 
0 
100 
200 
300 
400 
500 
600 
700 
800 
900 
* 
* 
AZ A 
Z 
A 
Z 
...
Histology: implant 3-bone marrow cells interaction 
Implant 3-fibrinogen coating 
Goldner’sTrichromestain
Histology: implant 3- host bone interaction 
Goldner’sTrichromestain 
Implant 3-fibrinogen coating
SEM/EDX bone-implant interface 
Ca/P= 1.62 
Ca/P= 1.77 
4 weeks 
8 weeks
Summary 
Ceramicspecimenswiththecomposition 
80%Al2O3-20%3YSZ+5%TiO2processedbySPSweresurfacetreatedwithSnF2/ NaBF4respec...
Animal model-The presence of young, compact lamellar bone and osteocytesnear the implant surface indicated good biocompat...
Related papers: 
O. Ormanci, I. Akin, F. Sahin, O. Yucel, V. Simon, Simona Cavalu, G. Goller, Spark Plasma sintered A2O3-...
Acknowledgments: UEFISCDIproject PNII-ID-PCE 2011-3-0441 contract nr. 237/2011 and Bilateral Cooperation RO-TR. 
•Prof. dr...
Upcoming SlideShare
Loading in …5
×

Simona cavalu malta2014

Bioceramics for Load Bearing Applications: Organic/ Inorganic Treatments to Enhance their Bioactivity and Biocompatibility

  • Login to see the comments

  • Be the first to like this

Simona cavalu malta2014

  1. 1. Prof. dr. Simona CavaluFaculty of Medicine and PharmacyUniversity of OradeaROMANIA
  2. 2. Motivation As the average age of population grows, the need for medical devices to replace damaged or worn tissues increases. As patients have become more and more demanding regarding esthetic and biocompatibility aspects of their dental restorations .
  3. 3. Theidealceramicisahighperformancebiocompositethatcombinestheexcellentmaterialpropertiesofaluminaintermsofchemicalstabilityandlowwear,andofzirconiawithitssuperiormechanicalstrengthandfracturetoughness. Alumina/zirconiaceramics were successfully used in total hip/knee arthroplastyin the last decades. For dental application: root canal posts, orthodontic brackets, implant abutments and all-ceramic restorations.
  4. 4. Bioceramicinteraction with living tissue Bioinert Bioactive Surface modifications and post –synthesis treatments for better performances Toughandstrongceramicslikezirconia,aluminaoralumina-zirconiacompositesarenotcapableofcreatingabiologicallyadherentinterfacelayerwithboneduetothechemicallyinertnatureofthesetwostableoxides.
  5. 5. Surface covering layers/coatings Biological response Cells viability Cells attachment Cells proliferation Surface modification: organic coating/ inorganic treatment Organic: proteins, DNA, sugars. Inorganic: surface blasting , acid etching , fluoride
  6. 6. Goal Inthepresentstudywearefocusedonthepossiblebeneficialeffectoforganiccoating(fibrinogen)andinorganictreatment(fluorinationwithSnF2andNaBF4)withrespecttonewalumina/zirconiabioceramics. Themainobjectiveistoanalyzethebiocompatibilityofalumina/zirconiaceramicsupontreatmentviainvitroandinvivotests.
  7. 7. Materials Composition: 80%Al2O3–20%YSZ with 5%TiO2addition Spark plasma sintering method at 1350-1400◦C. Structural characterization by FTIR and XRD spectroscopy Morphological details of the surface investigated by SEM Mechanical properties: Fracture toughness 5.3 MPam½ (under a load of 19.6 N) Vickers hardness 16.7 GPa(under a load of 9.8N). O. Ormanci, S. Cavalu-Mater SciEng C 40 (2014)
  8. 8. FTIR spectroscopy 1200 1000 800 600 400 0 3 5 x Al 2 O 3 80Al 2 O 3 ·20ZrO 2 ·xTiO 2 Intensity/ a.u. Wavenumbers (cm-1) 648 617 465 Modifications of stretching vibration modes AlO6 octaedra
  9. 9. XRD patterns Al2O3 80Al2O3-20YSZ 80Al2O3-20YSZ +5TiO2 No monoclinic phase ZrO2
  10. 10. SEM 80Al2O3-20YSZ 80Al2O3-20YSZ with 5% TiO2 Al2O3
  11. 11. Texture of protein (fibrinogen) coating on alumina/zirconiaceramics- electrodeposition
  12. 12. Native Fibr Fibr/specimen 1 Fibr/specimen 2 Native Fibr Fibr/specimen 1 Fibr/specimen 2 FTIR spectroscopy and deconvolution αhelix % βsheet% βturns % Random % Side chain% 19.99.2
  13. 13. Surface treatment with SnF2and NaBF4-ATR FTIR evidence Fig. 1 ATR FTIR spectra of SnF2 and NaBF4 powders as received from the supplier . Fig. 2 ATR FTIR spectra recorded on specimen surface before and after treatment using SnF2 and NaBF4. Al-O Zr-O
  14. 14. Surface treatment- XPS evidence 1200 1000 800 600 400 200 0 F 1s Al 2s Zr 3d Al 2p C 1s N 1s O 1s Sn 4d Zr 4p F 2s Sn 3p1 Sn 3d Zr 3d N 1s F 1s Al 2p Na 1s O 1s C 1s Intensity (a.u) Binding Energy (eV) Sn 3p3 Al 2s O Auger Zr 4p Specimen 2 SnF 2 NaBF 4
  15. 15. In vitro test: cells culture Human fibroblast (HLF) seeded in a concentration of 2x104/cm2 cells on the surface of each sample (SnF2 respectively NaBF4 treated ) and cultured for 3h, 7h and 24h. Cell nuclei were stained with 5 mMDraq5 diluted 1:1000 in distilled water for 5 min at room temperature. A B C D Visual inspection demonstrating initial adherence and proliferation of fibroblasts. 3h 24 hSnF2NaBF4
  16. 16. Fibroblasts adherence/proliferation evidence by confocalmicroscopySnF2NaBF4 24 h 7 hSnF2NaBF4 7 h 24 h 3 h
  17. 17. SEM –initial stage of adherence 3hSnF2NaBF4
  18. 18. 7hNaBF4SnF2
  19. 19. 24 hSnF2NaBF4
  20. 20. MTTassayresultsshowingviablefibroblastscellswithrespecttocontrolandsurfacetreatedalumina/zirconiaspecimensafter3,7and24hoursofculture. The label * indicates p<0.001 versus control, **indicates p<0.01 and *** indicates a p<0.001 with respect to specimen 1. SnF2NaBF4
  21. 21. In vivo tests: animal model (rabbit) Implant 1-SnF2 treatment Implant 2-NaBF4 treatment Implant 3-Fibrinogen
  22. 22. 50μm Implant site Haversiancanal New bone proliferation Interface bone-implant Haversiancanal New bone proliferation Interface bone-implant 50μm Implant siteHistology; implant 1 = SnF2 treatmentimplant 2 = NaBF4 treatment 1 2
  23. 23. Ca/P= 1.62- 1.80 Haversian canal Bone morphology after 4 and 8 weeks post -surgery 4 weeks 8 weeks EDAX
  24. 24. XRD spectrum of the femoral bone 0 20 40 60 80 100 0 100 200 300 400 500 600 700 800 900 * * AZ A Z A Z A A B Z A A A Z A Z A Z A A A I (a.u.) 2 (deg) AlZr Biocomposite Bone/AlZr Bone A T Z B
  25. 25. Histology: implant 3-bone marrow cells interaction Implant 3-fibrinogen coating Goldner’sTrichromestain
  26. 26. Histology: implant 3- host bone interaction Goldner’sTrichromestain Implant 3-fibrinogen coating
  27. 27. SEM/EDX bone-implant interface Ca/P= 1.62 Ca/P= 1.77 4 weeks 8 weeks
  28. 28. Summary Ceramicspecimenswiththecomposition 80%Al2O3-20%3YSZ+5%TiO2processedbySPSweresurfacetreatedwithSnF2/ NaBF4respectivelyfibrinogenbyelectrodeposition. Thesurfacemodifications/texturewererevealedbyATR-FTIR,XPSandSEM;itwasdemonstratedthattheSnF2treatmentismoreeffectivethanNaBF4. Proteincharacteristicsarepreservedupondepositionprocedure. Fibroblastscellscultureinthepresenceoffluorine-treatedspecimensallowedtoassaycelladhesion,cellproliferationandcolonycapabilitybyfluorescenceevaluation.Bothinorganictreatmentsshowssimilarresults,butcellcolonizationcapabilityseemstobepromotedbytheSnF2treatment(cellscultureforfibrinogencoatedisnotshown,workinprogress…..) MorphologicaldetailsofthefibroblastsattachedonthesurfaceoffluorinetreatedsampleswereemphasizedbySEMshowingtheformationofashell-likecoatingafter24hoursincubation. Histologicalimagesdemonstratedthebiocompatibilityofthetreatedimplantsasnogaps,fibroustissue,multinucleatedcellsorinflamationwerefoundattheboneimplantinterface.AbetterbonetoimplantcontactwasnoticedinthecaseofSnF2treatment.
  29. 29. Animal model-The presence of young, compact lamellar bone and osteocytesnear the implant surface indicated good biocompatibility, and certainly the presence of the implant did not disturb the processes of bone formation at the interface, for both organic/inorganic treatment. Microstructure details (including Haversiancanals) of bone and bone marrow tissue and elemental composition at the interface indicated Ca/P =1.62 -1.77 SummaryConclusions:Organic(proteic)filmorfluorideassurfaceconditioningmightbeanalternativeapproachtoinducethebioactivityandimprovethebiocompatibilityofdensebioceramicsdesignedtoloadbearingbonereplacement(hipjoint,dentalabutments)andtooptimizethebiologicalresponseforspecificapplicationsofbiomedicalimplants.
  30. 30. Related papers: O. Ormanci, I. Akin, F. Sahin, O. Yucel, V. Simon, Simona Cavalu, G. Goller, Spark Plasma sintered A2O3-YSZ-TiO2 composites: Processing, characterization and in vivo evaluation, Materials Science and Engineering C, 40 (2014) 16-23. Simona Cavalu, C. Ratiu, O. Ponta, V. Simon, D. Rugina, V. Miclaus, I. Akin, G. Goller, Improving osseointegrationof alumina/zirconiaceramic implants by fluoride surface treatment, Digest Journal of Nanomaterialsand BiostructuresVol. 9, No. 2 (2014) 797 –808. Simona Cavalu, V. Simon, F. Banica, I. Akin, G. Goller, Surface modification of alumina/zirconiabioceramicsupon different fluoride-based treatments, Int. J. Appl. Ceram. Technol., 11 [2] 402–411 (2014). Simona Cavalu, V. Simon, I. Akin, G. Goller, Adherence properties of acrylic bone cement to alumina ceramics designed for clinical application, ActaPhysicaPolonicaA, nr.2,vol.125 (2014) 603-605 S. Cavalu, V. Simon, C. Ratiu, I. Oswald, R. Gabor, O. Ponta, I. Akin, G. Goller, Correlation between structural properties and in vivo biocompatibility of alumina/zirconiabioceramics, Key Engineering Materials vols. 493-494, 1-6(2012)
  31. 31. Acknowledgments: UEFISCDIproject PNII-ID-PCE 2011-3-0441 contract nr. 237/2011 and Bilateral Cooperation RO-TR. •Prof. dr. VioricaSimonBabes-BolyaiUniversity, Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano- Sciences, Cluj-Napoca, Romania. •Dr. Cristian Ratiu, Ioan Oswaldand Silviu Vlad, University of Oradea, Faculty of Medicine and Pharmaceutics, Oradea, Romania. •Dr. Dumitrita Rugina, USAMV Cluj- Napoca. •Prof. dr. GultekinGollerand assist. prof. Ipek Akin, Istanbul Technical University, Materials Science Department.

×