SlideShare a Scribd company logo
Terminologies and information models
Silje Ljosland Bakke
Information architect, Nasjonal IKT HF
E-mail: silje.ljosland.bakke@nasjonalikt.no / Twitter: @siljelb
«Nasjonal IKT har valgt arketyper som metode
for strukturering av journaldata. Det er uklart
hvorvidt i hvilken grad alternativer har vært
vurdert, eks. SNOMED-CT i kombinasjon med
ICD-10 slik det benyttes i mange av de ledende
systemene internasjonalt.»
- Helsedirektoratet (2014); IKT utfordringsbilde i helse- og omsorgssektoren
Are information models enough?
•Sure, if we’re okay with making 100k models,
one for each diagnosis, lab result, symptom, …
•Sure, if we never want a list of all the patients
who had viral lung disesases
•We need something more: Terminologies
5
Terms/knowledge about
health and healthcare:
Terminologies
Vocabularies,
classifications,
ontologies; ICD-10,
SNOMED CT, ICF
Framework for information
about single individuals:
Information
models
Information structure;
openEHR archetypes, FHIR
resources
Rules to be applied to
recorded information:
Inference models
Rules and knowledge bases
used in decision support
and alert systems.
Some overlap
Terminologies
•Controlled vocabularies
•Classifications
•Ontological thesauri
8
Controlled vocabulary
•Flat lists of coded concepts
•Examples: code sets at volven.no
9
Classification
•Hierarchies
•Examples: ICD-10, ATC
1
Ontological thesauri
•Polyhierarchies with associated attributes
•Synonyms
•Some are combinatorial
•Examples: SNOMED CT,
ICNP
1
e-Patient Dave
Blogg: http://e-patients.net/archives/2009/04/imagine-if-someone-had-been-managing-your-data-and-then-you-
looked.html
“Okay, yes, HCTz is my blood
pressure medication. But low
potassium? That was true
when I was hospitalized two
years ago, not now. What’s
going on?”
2009: “So I went into my patient
portal, PatientSite, and clicked the button to do
it<upload heath data to Google Health>. I checked
the boxes for all the options and clicked Upload. It
was pretty quick.
But WTF? An alarm: “! Requires immediate
attention”
Fra: Ocean Informatics, 2014
ePDaves Google-problemliste
• Acidosis
• Anxiety Disorder
• Aortic Aneurysm
• Arthroplasty - Hip, Total Replacemt
• Bone Disease
• CANCER
• Cancer Metastasis to Bone
• Cardiac Impairment
• CHEST MASS
• Chronic Lung Disease
• Depressed Mood
• DEPRESSION
• Diarrhea
• Elevated Blood Pressure
• Hair Follicle Inflammation w Abscess in Sweat
Gland Areas
• HEALTH MAINTENANCE
• HYDRADENITIS
• HYPERTENSION
• Inflammation of the Large Intestine
• Intestinal Parasitic Infection
• Kidney Problems Causing a Decreased
Amount of Urine to be Passed
• Lightheaded
• Low Amount of Calcium in the Blood
• Low Amount of Potassium in the Blood
• Malignant Neoplastic Disease
• Migraine Headache
• MIGRAINES
• Nausea and Vomiting
• Nephrosis
• PSYCH
• Rash
• Spread of Cancer to Brain or Spinal Cord
• Swollen Lymph Nodes
Date four
months after
diagnosis
Correct date,
triggered diagnosis
No other items
had a date…
Fra: Ocean Informatics, 2014
• Inflammation of the Large Intestine
• Intestinal Parasitic Infection
• Kidney Problems Causing a Decreased
Amount of Urine to be Passed
• Lightheaded
• Low Amount of Calcium in the Blood
• Low Amount of Potassium in the Blood
• Malignant Neoplastic Disease
• Migraine Headache
• MIGRAINES
• Nausea and Vomiting
• Nephrosis
• PSYCH
• Rash
• Spread of Cancer to Brain or Spinal Cord
• Swollen Lymph Nodes
• Acidosis
• Anxiety Disorder
• Aortic Aneurysm
• Arthroplasty - Hip, Total Replacemt
• Bone Disease
• CANCER
• Cancer Metastasis to Bone
• Cardiac Impairment
• CHEST MASS
• Chronic Lung Disease
• Depressed Mood
• DEPRESSION
• Diarrhea
• Elevated Blood Pressure
• Hair Follicle Inflammation w Abscess in
Sweat Gland Areas
• HEALTH MAINTENANCE
• HYDRADENITIS
• HYPERTENSION
ePDaves Google-problemliste
Related to vomiting
during chemotherapy
Never had!
Never had!
Self diagnosed
optical migraine.
No headache.
Fra: Ocean Informatics, 2014
• Inflammation of the Large Intestine
• Intestinal Parasitic Infection
• Kidney Problems Causing a Decreased
Amount of Urine to be Passed
• Lightheaded
• Low Amount of Calcium in the Blood
• Low Amount of Potassium in the Blood
• Malignant Neoplastic Disease
• Migraine Headache
• MIGRAINES
• Nausea and Vomiting
• Nephrosis
• PSYCH
• Rash
• Spread of Cancer to Brain or Spinal Cord
• Swollen Lymph Nodes
• Acidosis
• Anxiety Disorder
• Aortic Aneurysm
• Arthroplasty - Hip, Total Replacemt
• Bone Disease
• CANCER
• Cancer Metastasis to Bone
• Cardiac Impairment
• CHEST MASS
• Chronic Lung Disease
• Depressed Mood
• DEPRESSION
• Diarrhea
• Elevated Blood Pressure
• Hair Follicle Inflammation w Abscess in
Sweat Gland Areas
• HEALTH MAINTENANCE
• HYDRADENITIS
• HYPERTENSION
ePDaves Google-problemliste
Vague!
Duplicate? Symptom or
diagnosis?
Persisting diagnosis?
Related to Vomiting?
What’s
this?
Temporary
sign?
Temporary
symptom?
Long term diagnosis or
related to vomiting?
“the system transmitted
insurance billing codes
to Google Health,
not doctors’ diagnoses.”
“I don’t want to get into the whole thing right now, but basically if a
doc needs to bill insurance for something and the list of billing codes
doesn’t happen to include exactly what your condition is, they cram
it into something else so the stupid system will accept it.)
(And, btw, everyone in the business is apparently accustomed to the
system being stupid, so it’s no surprise that nobody can tell whether
things are making any sense: nobody counts on the data to be
meaningful in the first place.)”
Fra: Ocean Informatics, 2014
Fra: Ocean Informatics, 2014
Terminologies vs information models
Information models can be said to
describe the "questions"
Terminologies can give (some of) the
"answers"
Complementary concepts
ICD_10::L40.0::Psoriasis vulgaris
and
SCT_2015::74757004::Skin structure of elbow
SCT_2015::6736007::Moderate
???
Where terminologies shine
•Hundreds of thousands of concepts
–Diagnoses, symptoms, lab results,
body structures, organisms, procedures, …
•Inference
based on relations
between concepts
1
Where terminologies don’t shine
•Context
•Quantitative data types
•Complex concepts
2
Kontekst
•"Let’s just chuck the codes
in here so we can bill for this
cancer treatment!"
•15 years later, from the brand new Dr. Google:
– "Ma’am, I’m sorry to tell you you have ovarian cancer."
– "What!? They were taken out 15 years ago!"
2
Quantitative data types
•«Wouldn’t it be really nice to just have a code
for the number of the pregnancy the woman is
in…?"
•"Yeah. 10 ought to be
enough for anybody."
Famous last words…
2
Complex concepts
•Combinatorial explosion
–"Every kind of rash for every skin area"
–Every combination of oral glucose challenge
•Postcoordination may
mitigate, but beware…
2
Fra: Ocean Informatics, 2014
…in 601 different ways…
…jo, på 601 forskjellige måter…
Code
Analyte name
Timing
Dose
Route
Sample material
Substance
Fra: Ocean Informatics, 2014
…jo, på 601 forskjellige måter…
Fra: Ocean Informatics, 2014
Grey areas
•Small value sets
•Some contextual information
–Actual diagnosis vs. tentative vs. risk vs. exclusion
vs. family history
•Consistent use is hard, and not always appropriate
–Different use cases will have different requirements
2
Some principles
•When to use the information model?
– Complex information (medication orders, family history,
adverse reactions)
– To define “questions”, not “answers”
•When to use terminology?
– Things that exist in real life (medications, body structures,
substances, organisms)
– To define ”answers”, for example value sets
Fra: Ocean Informatics, 2014
Terms defining “questions” in archetypes
Fra: Ocean Informatics, 2014
Terms as “answers” in templates
•Standard values for elements
•Value sets for dropdown lists
•Finding complete value sets can
be challenging…
Cost effective terminology use
•“Low hanging fruit”
– Core terminologies
• Problems/diagnoses (ICD, ICPC, ICNP, ICF, SNOMED CT, …)
• Procedures (NCMP, NCSP, ICNP, SNOMED CT, ICHI, …)
• Lab analyses (Laboratoriekodeverket, LOINC, SNOMED CT, …)
• Symptoms (SNOMED CT, ?)
• Medications (FEST, ATC, SNOMED CT, …)
– Reusable in lots of data sets
•Defining data elements only where there’s clear value
•Standard values only where there’s clear value
Summary
•Terminologies are necessary additions to information
models
•…but terminologies can’t be used on their own
•Grey areas -> pragmatic choices
•Structuring and coding should be done when there’s
clear value

More Related Content

What's hot

Introduction To Medical Data
Introduction To Medical DataIntroduction To Medical Data
Introduction To Medical Data
Dr Neelesh Bhandari
 
Big data and the Healthcare Sector
Big data and the Healthcare Sector Big data and the Healthcare Sector
Big data and the Healthcare Sector
Chris Groves
 
Watson – from Jeopardy to healthcare
Watson – from Jeopardy to healthcareWatson – from Jeopardy to healthcare
Watson – from Jeopardy to healthcare
Health Informatics New Zealand
 
Surveillance of social media: Big data analytics
Surveillance of social media: Big data analyticsSurveillance of social media: Big data analytics
Surveillance of social media: Big data analytics
Health Informatics New Zealand
 
HEALTH PREDICTION ANALYSIS USING DATA MINING
HEALTH PREDICTION ANALYSIS USING DATA  MININGHEALTH PREDICTION ANALYSIS USING DATA  MINING
HEALTH PREDICTION ANALYSIS USING DATA MINING
Ashish Salve
 
Developing a World Leading Technology Enabled Health Programme of Research
Developing a World Leading Technology Enabled Health Programme of ResearchDeveloping a World Leading Technology Enabled Health Programme of Research
Developing a World Leading Technology Enabled Health Programme of Research
Maged N. Kamel Boulos
 
Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...
Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...
Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...
Alexandre Riazanov
 
The Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data SetThe Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data Set
Sociotechnical Roundtable
 
IBM Watson: Clinical Decision Support
IBM Watson: Clinical Decision SupportIBM Watson: Clinical Decision Support
IBM Watson: Clinical Decision Support
New York Technology Council
 
Big data in Healthcare & Life Sciences
Big data in Healthcare & Life SciencesBig data in Healthcare & Life Sciences
Big data in Healthcare & Life Sciences
Matthias Vallaey
 
Making a Difference to The Healthcare Delivery System - David S. Muntz
Making a Difference to The Healthcare Delivery System - David S. MuntzMaking a Difference to The Healthcare Delivery System - David S. Muntz
Making a Difference to The Healthcare Delivery System - David S. Muntz
scoopnewsgroup
 
Using Machine Learning to Automate Clinical Pathways
Using Machine Learning to Automate Clinical PathwaysUsing Machine Learning to Automate Clinical Pathways
Using Machine Learning to Automate Clinical Pathways
diannepatricia
 
Machine learning, health data & the limits of knowledge
Machine learning, health data & the limits of knowledgeMachine learning, health data & the limits of knowledge
Machine learning, health data & the limits of knowledge
Paul Agapow
 
Cerner ppt
Cerner pptCerner ppt
Csc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_final
Csc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_finalCsc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_final
Csc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_final
ff2687
 
(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...
(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...
(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...
Amazon Web Services
 
HEALTH PREDICTION ANALYSIS USING DATA MINING
HEALTH PREDICTION ANALYSIS USING DATA  MININGHEALTH PREDICTION ANALYSIS USING DATA  MINING
HEALTH PREDICTION ANALYSIS USING DATA MINING
Ashish Salve
 
openEHR v COVID-19
openEHR v COVID-19openEHR v COVID-19
openEHR v COVID-19
openEHR-Japan
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
DataWorks Summit/Hadoop Summit
 
Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...
Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...
Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...
LexisNexis
 

What's hot (20)

Introduction To Medical Data
Introduction To Medical DataIntroduction To Medical Data
Introduction To Medical Data
 
Big data and the Healthcare Sector
Big data and the Healthcare Sector Big data and the Healthcare Sector
Big data and the Healthcare Sector
 
Watson – from Jeopardy to healthcare
Watson – from Jeopardy to healthcareWatson – from Jeopardy to healthcare
Watson – from Jeopardy to healthcare
 
Surveillance of social media: Big data analytics
Surveillance of social media: Big data analyticsSurveillance of social media: Big data analytics
Surveillance of social media: Big data analytics
 
HEALTH PREDICTION ANALYSIS USING DATA MINING
HEALTH PREDICTION ANALYSIS USING DATA  MININGHEALTH PREDICTION ANALYSIS USING DATA  MINING
HEALTH PREDICTION ANALYSIS USING DATA MINING
 
Developing a World Leading Technology Enabled Health Programme of Research
Developing a World Leading Technology Enabled Health Programme of ResearchDeveloping a World Leading Technology Enabled Health Programme of Research
Developing a World Leading Technology Enabled Health Programme of Research
 
Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...
Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...
Towards Clinical Intelligence with SADI Semantic Web Services: a Case Study w...
 
The Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data SetThe Alzheimer's Disease Research Network and the Uniform Data Set
The Alzheimer's Disease Research Network and the Uniform Data Set
 
IBM Watson: Clinical Decision Support
IBM Watson: Clinical Decision SupportIBM Watson: Clinical Decision Support
IBM Watson: Clinical Decision Support
 
Big data in Healthcare & Life Sciences
Big data in Healthcare & Life SciencesBig data in Healthcare & Life Sciences
Big data in Healthcare & Life Sciences
 
Making a Difference to The Healthcare Delivery System - David S. Muntz
Making a Difference to The Healthcare Delivery System - David S. MuntzMaking a Difference to The Healthcare Delivery System - David S. Muntz
Making a Difference to The Healthcare Delivery System - David S. Muntz
 
Using Machine Learning to Automate Clinical Pathways
Using Machine Learning to Automate Clinical PathwaysUsing Machine Learning to Automate Clinical Pathways
Using Machine Learning to Automate Clinical Pathways
 
Machine learning, health data & the limits of knowledge
Machine learning, health data & the limits of knowledgeMachine learning, health data & the limits of knowledge
Machine learning, health data & the limits of knowledge
 
Cerner ppt
Cerner pptCerner ppt
Cerner ppt
 
Csc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_final
Csc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_finalCsc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_final
Csc8710 001 winter2014-mohammed_shahnawazali-ff2687_presentation_final
 
(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...
(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...
(HLS305) Transforming Cancer Treatment: Integrating Data to Deliver on the Pr...
 
HEALTH PREDICTION ANALYSIS USING DATA MINING
HEALTH PREDICTION ANALYSIS USING DATA  MININGHEALTH PREDICTION ANALYSIS USING DATA  MINING
HEALTH PREDICTION ANALYSIS USING DATA MINING
 
openEHR v COVID-19
openEHR v COVID-19openEHR v COVID-19
openEHR v COVID-19
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
 
Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...
Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...
Comprehensive Medical Malpractice Litigation Solution - LexisNexis MedMal Nav...
 

Viewers also liked

И.И.Першин "Распознавание паттернов в ЭЭГ"
И.И.Першин "Распознавание паттернов в ЭЭГ"И.И.Першин "Распознавание паттернов в ЭЭГ"
И.И.Першин "Распознавание паттернов в ЭЭГ"
ЗПШ СПбГУ
 
ICST 2017 Day1 Opening Ceremony Research Track
ICST 2017 Day1 Opening Ceremony Research TrackICST 2017 Day1 Opening Ceremony Research Track
ICST 2017 Day1 Opening Ceremony Research Track
Hironori Washizaki
 
Digitalisaation merkitys turvallisuudelle
Digitalisaation merkitys turvallisuudelleDigitalisaation merkitys turvallisuudelle
Digitalisaation merkitys turvallisuudelle
Jyrki Kasvi
 
SNOMED CT-A technologist's Perspective
SNOMED CT-A technologist's PerspectiveSNOMED CT-A technologist's Perspective
SNOMED CT-A technologist's Perspective
Apollo Hospitals Group and ATNF
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
Barry Feldman
 
Design in Tech Report 2017
Design in Tech Report 2017Design in Tech Report 2017
Design in Tech Report 2017
John Maeda
 
Capital Hill Cashgate Scandal : Zara Marketing Campaign Design
Capital Hill Cashgate Scandal : Zara Marketing Campaign DesignCapital Hill Cashgate Scandal : Zara Marketing Campaign Design
Capital Hill Cashgate Scandal : Zara Marketing Campaign Design
Joseph Jacob Esther
 
El TAO de la programación
El TAO de la programaciónEl TAO de la programación
El TAO de la programación
Willy Marroquin (WillyDevNET)
 
Consejos rápidos: Convertirse en el Asesor de confianza de medios digitales
Consejos rápidos: Convertirse en el Asesor de confianza de medios digitalesConsejos rápidos: Convertirse en el Asesor de confianza de medios digitales
Consejos rápidos: Convertirse en el Asesor de confianza de medios digitales
Juan Pittau
 
Learning with a Wasserstein Loss (NIPS2015)
Learning with a Wasserstein Loss (NIPS2015)Learning with a Wasserstein Loss (NIPS2015)
Learning with a Wasserstein Loss (NIPS2015)
Hayato Watanabe
 
Mental Health and Cognitive Changes in the Older Adult
Mental Health and Cognitive Changes in the Older AdultMental Health and Cognitive Changes in the Older Adult
Mental Health and Cognitive Changes in the Older Adult
Paul McNamara
 
「望ましさ」による優先順位づけ
「望ましさ」による優先順位づけ「望ましさ」による優先順位づけ
「望ましさ」による優先順位づけ
Arata Fujimura
 
発想の飛躍を生み出すクリエイティブシンキング
発想の飛躍を生み出すクリエイティブシンキング発想の飛躍を生み出すクリエイティブシンキング
発想の飛躍を生み出すクリエイティブシンキング
Yusuke Kuroda
 
パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~
パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~
パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~
n_ryota
 
柱状節理のでき方
柱状節理のでき方柱状節理のでき方
柱状節理のでき方
Suzuki Yusuke
 
Intellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parte
Intellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parteIntellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parte
Intellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parte
Portante Andrea
 
ストーリーを絵コンテにする
ストーリーを絵コンテにするストーリーを絵コンテにする
ストーリーを絵コンテにする
Takumi Seike
 
How to Write a Great Article: Simple Tips & Tricks from Experienced Authors
How to Write a Great Article: Simple Tips & Tricks from Experienced AuthorsHow to Write a Great Article: Simple Tips & Tricks from Experienced Authors
How to Write a Great Article: Simple Tips & Tricks from Experienced Authors
GoDates
 
Review by the President & CEO, Suominen Corporation's Annual General Meeting ...
Review by the President & CEO, Suominen Corporation's Annual General Meeting ...Review by the President & CEO, Suominen Corporation's Annual General Meeting ...
Review by the President & CEO, Suominen Corporation's Annual General Meeting ...
Suominen Corporation
 
Cities and design
Cities and designCities and design
Cities and design
Shuwei Huang
 

Viewers also liked (20)

И.И.Першин "Распознавание паттернов в ЭЭГ"
И.И.Першин "Распознавание паттернов в ЭЭГ"И.И.Першин "Распознавание паттернов в ЭЭГ"
И.И.Першин "Распознавание паттернов в ЭЭГ"
 
ICST 2017 Day1 Opening Ceremony Research Track
ICST 2017 Day1 Opening Ceremony Research TrackICST 2017 Day1 Opening Ceremony Research Track
ICST 2017 Day1 Opening Ceremony Research Track
 
Digitalisaation merkitys turvallisuudelle
Digitalisaation merkitys turvallisuudelleDigitalisaation merkitys turvallisuudelle
Digitalisaation merkitys turvallisuudelle
 
SNOMED CT-A technologist's Perspective
SNOMED CT-A technologist's PerspectiveSNOMED CT-A technologist's Perspective
SNOMED CT-A technologist's Perspective
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
 
Design in Tech Report 2017
Design in Tech Report 2017Design in Tech Report 2017
Design in Tech Report 2017
 
Capital Hill Cashgate Scandal : Zara Marketing Campaign Design
Capital Hill Cashgate Scandal : Zara Marketing Campaign DesignCapital Hill Cashgate Scandal : Zara Marketing Campaign Design
Capital Hill Cashgate Scandal : Zara Marketing Campaign Design
 
El TAO de la programación
El TAO de la programaciónEl TAO de la programación
El TAO de la programación
 
Consejos rápidos: Convertirse en el Asesor de confianza de medios digitales
Consejos rápidos: Convertirse en el Asesor de confianza de medios digitalesConsejos rápidos: Convertirse en el Asesor de confianza de medios digitales
Consejos rápidos: Convertirse en el Asesor de confianza de medios digitales
 
Learning with a Wasserstein Loss (NIPS2015)
Learning with a Wasserstein Loss (NIPS2015)Learning with a Wasserstein Loss (NIPS2015)
Learning with a Wasserstein Loss (NIPS2015)
 
Mental Health and Cognitive Changes in the Older Adult
Mental Health and Cognitive Changes in the Older AdultMental Health and Cognitive Changes in the Older Adult
Mental Health and Cognitive Changes in the Older Adult
 
「望ましさ」による優先順位づけ
「望ましさ」による優先順位づけ「望ましさ」による優先順位づけ
「望ましさ」による優先順位づけ
 
発想の飛躍を生み出すクリエイティブシンキング
発想の飛躍を生み出すクリエイティブシンキング発想の飛躍を生み出すクリエイティブシンキング
発想の飛躍を生み出すクリエイティブシンキング
 
パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~
パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~
パーソナルワークのすすめ ~仕事・家庭・趣味のバランス調整~
 
柱状節理のでき方
柱状節理のでき方柱状節理のでき方
柱状節理のでき方
 
Intellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parte
Intellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parteIntellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parte
Intellettuali Stranieri a Roma dal Grand Tour al XIX Secolo - 3a parte
 
ストーリーを絵コンテにする
ストーリーを絵コンテにするストーリーを絵コンテにする
ストーリーを絵コンテにする
 
How to Write a Great Article: Simple Tips & Tricks from Experienced Authors
How to Write a Great Article: Simple Tips & Tricks from Experienced AuthorsHow to Write a Great Article: Simple Tips & Tricks from Experienced Authors
How to Write a Great Article: Simple Tips & Tricks from Experienced Authors
 
Review by the President & CEO, Suominen Corporation's Annual General Meeting ...
Review by the President & CEO, Suominen Corporation's Annual General Meeting ...Review by the President & CEO, Suominen Corporation's Annual General Meeting ...
Review by the President & CEO, Suominen Corporation's Annual General Meeting ...
 
Cities and design
Cities and designCities and design
Cities and design
 

Similar to Terminology and information models

Atul Butte's presentation to the Association of Medical School Pediatric Depa...
Atul Butte's presentation to the Association of Medical School Pediatric Depa...Atul Butte's presentation to the Association of Medical School Pediatric Depa...
Atul Butte's presentation to the Association of Medical School Pediatric Depa...
University of California, San Francisco
 
How We Create an Electronic Healthcare Environment
How We Create an Electronic Healthcare EnvironmentHow We Create an Electronic Healthcare Environment
How We Create an Electronic Healthcare Environment
Health Informatics New Zealand
 
Data usage of drgrouper
Data usage of drgrouperData usage of drgrouper
Data usage of drgrouper
Mihai Negrea
 
Brain tumour patient forum Danette Langbecker keynote speech
Brain tumour patient forum Danette Langbecker keynote speechBrain tumour patient forum Danette Langbecker keynote speech
Brain tumour patient forum Danette Langbecker keynote speech
Cure Brain Cancer Foundation
 
Atul Butte NIPS 2017 ML4H
Atul Butte NIPS 2017 ML4HAtul Butte NIPS 2017 ML4H
Atul Butte NIPS 2017 ML4H
University of California, San Francisco
 
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
University of California, San Francisco
 
Beyond Proofs of Concept for Biomedical AI
Beyond Proofs of Concept for Biomedical AIBeyond Proofs of Concept for Biomedical AI
Beyond Proofs of Concept for Biomedical AI
Paul Agapow
 
Rare Disease Centres of Excellence (CIHR , NMD4C, ERNs & RDI slides)
Rare Disease Centres of Excellence (CIHR , NMD4C,  ERNs & RDI slides)Rare Disease Centres of Excellence (CIHR , NMD4C,  ERNs & RDI slides)
Rare Disease Centres of Excellence (CIHR , NMD4C, ERNs & RDI slides)
Canadian Organization for Rare Disorders
 
Using the EMR in early recognition and management of sepsis
Using the EMR in early recognition and management of sepsisUsing the EMR in early recognition and management of sepsis
Using the EMR in early recognition and management of sepsis
Health Informatics New Zealand
 
Getting Health Information Right
Getting Health Information RightGetting Health Information Right
Getting Health Information Right
Koray Atalag
 
2013 03 genomic medicine slides
2013 03 genomic medicine slides2013 03 genomic medicine slides
2013 03 genomic medicine slides
University of California, San Francisco
 
Master Class on EMR/EHR Standards by Karanvir Singh
Master Class on EMR/EHR Standards by Karanvir SinghMaster Class on EMR/EHR Standards by Karanvir Singh
Master Class on EMR/EHR Standards by Karanvir Singh
Apollo Hospitals Group and ATNF
 
Helseit 2012-klein-plenary on-ehr-cr
Helseit 2012-klein-plenary on-ehr-crHelseit 2012-klein-plenary on-ehr-cr
Helseit 2012-klein-plenary on-ehr-cr
Gunnar Klein
 
2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem
Alain van Gool
 
Making sense of your own clinic's data
Making sense of your own clinic's dataMaking sense of your own clinic's data
Making sense of your own clinic's data
Gaurav Gupta
 
Atul Butte's presentation at CTIC 2020
Atul Butte's presentation at CTIC 2020Atul Butte's presentation at CTIC 2020
Atul Butte's presentation at CTIC 2020
University of California, San Francisco
 
Health Care Processes and Decision Making_Lecture 3_ slides
Health Care Processes and Decision Making_Lecture 3_ slidesHealth Care Processes and Decision Making_Lecture 3_ slides
Health Care Processes and Decision Making_Lecture 3_ slides
CMDLearning
 
The Necessary
The NecessaryThe Necessary
The Necessary
Sean Ekins
 
Personalized Medicine: Are we there yet?
Personalized Medicine: Are we there yet?Personalized Medicine: Are we there yet?
Personalized Medicine: Are we there yet?
Reid Robison
 
Game of documentation, Winter is coming Surviving ICD10
Game of documentation, Winter is coming Surviving ICD10Game of documentation, Winter is coming Surviving ICD10
Game of documentation, Winter is coming Surviving ICD10
Nick van Terheyden
 

Similar to Terminology and information models (20)

Atul Butte's presentation to the Association of Medical School Pediatric Depa...
Atul Butte's presentation to the Association of Medical School Pediatric Depa...Atul Butte's presentation to the Association of Medical School Pediatric Depa...
Atul Butte's presentation to the Association of Medical School Pediatric Depa...
 
How We Create an Electronic Healthcare Environment
How We Create an Electronic Healthcare EnvironmentHow We Create an Electronic Healthcare Environment
How We Create an Electronic Healthcare Environment
 
Data usage of drgrouper
Data usage of drgrouperData usage of drgrouper
Data usage of drgrouper
 
Brain tumour patient forum Danette Langbecker keynote speech
Brain tumour patient forum Danette Langbecker keynote speechBrain tumour patient forum Danette Langbecker keynote speech
Brain tumour patient forum Danette Langbecker keynote speech
 
Atul Butte NIPS 2017 ML4H
Atul Butte NIPS 2017 ML4HAtul Butte NIPS 2017 ML4H
Atul Butte NIPS 2017 ML4H
 
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
 
Beyond Proofs of Concept for Biomedical AI
Beyond Proofs of Concept for Biomedical AIBeyond Proofs of Concept for Biomedical AI
Beyond Proofs of Concept for Biomedical AI
 
Rare Disease Centres of Excellence (CIHR , NMD4C, ERNs & RDI slides)
Rare Disease Centres of Excellence (CIHR , NMD4C,  ERNs & RDI slides)Rare Disease Centres of Excellence (CIHR , NMD4C,  ERNs & RDI slides)
Rare Disease Centres of Excellence (CIHR , NMD4C, ERNs & RDI slides)
 
Using the EMR in early recognition and management of sepsis
Using the EMR in early recognition and management of sepsisUsing the EMR in early recognition and management of sepsis
Using the EMR in early recognition and management of sepsis
 
Getting Health Information Right
Getting Health Information RightGetting Health Information Right
Getting Health Information Right
 
2013 03 genomic medicine slides
2013 03 genomic medicine slides2013 03 genomic medicine slides
2013 03 genomic medicine slides
 
Master Class on EMR/EHR Standards by Karanvir Singh
Master Class on EMR/EHR Standards by Karanvir SinghMaster Class on EMR/EHR Standards by Karanvir Singh
Master Class on EMR/EHR Standards by Karanvir Singh
 
Helseit 2012-klein-plenary on-ehr-cr
Helseit 2012-klein-plenary on-ehr-crHelseit 2012-klein-plenary on-ehr-cr
Helseit 2012-klein-plenary on-ehr-cr
 
2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem
 
Making sense of your own clinic's data
Making sense of your own clinic's dataMaking sense of your own clinic's data
Making sense of your own clinic's data
 
Atul Butte's presentation at CTIC 2020
Atul Butte's presentation at CTIC 2020Atul Butte's presentation at CTIC 2020
Atul Butte's presentation at CTIC 2020
 
Health Care Processes and Decision Making_Lecture 3_ slides
Health Care Processes and Decision Making_Lecture 3_ slidesHealth Care Processes and Decision Making_Lecture 3_ slides
Health Care Processes and Decision Making_Lecture 3_ slides
 
The Necessary
The NecessaryThe Necessary
The Necessary
 
Personalized Medicine: Are we there yet?
Personalized Medicine: Are we there yet?Personalized Medicine: Are we there yet?
Personalized Medicine: Are we there yet?
 
Game of documentation, Winter is coming Surviving ICD10
Game of documentation, Winter is coming Surviving ICD10Game of documentation, Winter is coming Surviving ICD10
Game of documentation, Winter is coming Surviving ICD10
 

More from Silje Ljosland Bakke

Introduction to openEHR - InterHealth 2022
Introduction to openEHR - InterHealth 2022Introduction to openEHR - InterHealth 2022
Introduction to openEHR - InterHealth 2022
Silje Ljosland Bakke
 
What's the thing about health IT?
What's the thing about health IT?What's the thing about health IT?
What's the thing about health IT?
Silje Ljosland Bakke
 
Pragmatic standardisation of clinical models
Pragmatic standardisation of clinical modelsPragmatic standardisation of clinical models
Pragmatic standardisation of clinical models
Silje Ljosland Bakke
 
Hvorfor er helseinformasjon så vanskelig?
Hvorfor er helseinformasjon så vanskelig?Hvorfor er helseinformasjon så vanskelig?
Hvorfor er helseinformasjon så vanskelig?
Silje Ljosland Bakke
 
Pragmatic standardisation of clinical models - Interop19
Pragmatic standardisation of clinical models - Interop19Pragmatic standardisation of clinical models - Interop19
Pragmatic standardisation of clinical models - Interop19
Silje Ljosland Bakke
 
Terminologi og informasjonsmodeller
Terminologi og informasjonsmodellerTerminologi og informasjonsmodeller
Terminologi og informasjonsmodeller
Silje Ljosland Bakke
 
Standardisering av arketyper - hva er godt nok?
Standardisering av arketyper - hva er godt nok?Standardisering av arketyper - hva er godt nok?
Standardisering av arketyper - hva er godt nok?
Silje Ljosland Bakke
 
Helseinformasjon - hvorfor er det så vanskelig?
Helseinformasjon - hvorfor er det så vanskelig?Helseinformasjon - hvorfor er det så vanskelig?
Helseinformasjon - hvorfor er det så vanskelig?
Silje Ljosland Bakke
 
Tilgang på langs - livslang strukturert journal?
Tilgang på langs - livslang strukturert journal?Tilgang på langs - livslang strukturert journal?
Tilgang på langs - livslang strukturert journal?
Silje Ljosland Bakke
 
Poster on the Norwegian national goverance of archetypes
Poster on the Norwegian national goverance of archetypesPoster on the Norwegian national goverance of archetypes
Poster on the Norwegian national goverance of archetypes
Silje Ljosland Bakke
 

More from Silje Ljosland Bakke (10)

Introduction to openEHR - InterHealth 2022
Introduction to openEHR - InterHealth 2022Introduction to openEHR - InterHealth 2022
Introduction to openEHR - InterHealth 2022
 
What's the thing about health IT?
What's the thing about health IT?What's the thing about health IT?
What's the thing about health IT?
 
Pragmatic standardisation of clinical models
Pragmatic standardisation of clinical modelsPragmatic standardisation of clinical models
Pragmatic standardisation of clinical models
 
Hvorfor er helseinformasjon så vanskelig?
Hvorfor er helseinformasjon så vanskelig?Hvorfor er helseinformasjon så vanskelig?
Hvorfor er helseinformasjon så vanskelig?
 
Pragmatic standardisation of clinical models - Interop19
Pragmatic standardisation of clinical models - Interop19Pragmatic standardisation of clinical models - Interop19
Pragmatic standardisation of clinical models - Interop19
 
Terminologi og informasjonsmodeller
Terminologi og informasjonsmodellerTerminologi og informasjonsmodeller
Terminologi og informasjonsmodeller
 
Standardisering av arketyper - hva er godt nok?
Standardisering av arketyper - hva er godt nok?Standardisering av arketyper - hva er godt nok?
Standardisering av arketyper - hva er godt nok?
 
Helseinformasjon - hvorfor er det så vanskelig?
Helseinformasjon - hvorfor er det så vanskelig?Helseinformasjon - hvorfor er det så vanskelig?
Helseinformasjon - hvorfor er det så vanskelig?
 
Tilgang på langs - livslang strukturert journal?
Tilgang på langs - livslang strukturert journal?Tilgang på langs - livslang strukturert journal?
Tilgang på langs - livslang strukturert journal?
 
Poster on the Norwegian national goverance of archetypes
Poster on the Norwegian national goverance of archetypesPoster on the Norwegian national goverance of archetypes
Poster on the Norwegian national goverance of archetypes
 

Recently uploaded

一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
asyed10
 
Cell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docxCell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docx
vasanthatpuram
 
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Kaxil Naik
 
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
mkkikqvo
 
University of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma TranscriptUniversity of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma Transcript
soxrziqu
 
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docxDATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
SaffaIbrahim1
 
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
lzdvtmy8
 
UofT毕业证如何办理
UofT毕业证如何办理UofT毕业证如何办理
UofT毕业证如何办理
exukyp
 
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
nuttdpt
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
Vietnam Cotton & Spinning Association
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
tzu5xla
 
一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理
一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理
一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理
bopyb
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
aqzctr7x
 
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
slg6lamcq
 
A presentation that explain the Power BI Licensing
A presentation that explain the Power BI LicensingA presentation that explain the Power BI Licensing
A presentation that explain the Power BI Licensing
AlessioFois2
 
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
nyfuhyz
 
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
nuttdpt
 
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
Social Samosa
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Kiwi Creative
 
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
aguty
 

Recently uploaded (20)

一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
 
Cell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docxCell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docx
 
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
 
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
原版一比一多伦多大学毕业证(UofT毕业证书)如何办理
 
University of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma TranscriptUniversity of New South Wales degree offer diploma Transcript
University of New South Wales degree offer diploma Transcript
 
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docxDATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
 
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
一比一原版格里菲斯大学毕业证(Griffith毕业证书)学历如何办理
 
UofT毕业证如何办理
UofT毕业证如何办理UofT毕业证如何办理
UofT毕业证如何办理
 
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
一比一原版(UCSF文凭证书)旧金山分校毕业证如何办理
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
 
一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理
一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理
一比一原版(GWU,GW文凭证书)乔治·华盛顿大学毕业证如何办理
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
 
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
 
A presentation that explain the Power BI Licensing
A presentation that explain the Power BI LicensingA presentation that explain the Power BI Licensing
A presentation that explain the Power BI Licensing
 
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
 
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
一比一原版(UCSB文凭证书)圣芭芭拉分校毕业证如何办理
 
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
 
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
 

Terminology and information models

  • 1. Terminologies and information models Silje Ljosland Bakke Information architect, Nasjonal IKT HF E-mail: silje.ljosland.bakke@nasjonalikt.no / Twitter: @siljelb
  • 2.
  • 3. «Nasjonal IKT har valgt arketyper som metode for strukturering av journaldata. Det er uklart hvorvidt i hvilken grad alternativer har vært vurdert, eks. SNOMED-CT i kombinasjon med ICD-10 slik det benyttes i mange av de ledende systemene internasjonalt.» - Helsedirektoratet (2014); IKT utfordringsbilde i helse- og omsorgssektoren
  • 4. Are information models enough? •Sure, if we’re okay with making 100k models, one for each diagnosis, lab result, symptom, … •Sure, if we never want a list of all the patients who had viral lung disesases •We need something more: Terminologies 5
  • 5. Terms/knowledge about health and healthcare: Terminologies Vocabularies, classifications, ontologies; ICD-10, SNOMED CT, ICF Framework for information about single individuals: Information models Information structure; openEHR archetypes, FHIR resources Rules to be applied to recorded information: Inference models Rules and knowledge bases used in decision support and alert systems. Some overlap
  • 7. Controlled vocabulary •Flat lists of coded concepts •Examples: code sets at volven.no 9
  • 9. Ontological thesauri •Polyhierarchies with associated attributes •Synonyms •Some are combinatorial •Examples: SNOMED CT, ICNP 1
  • 10. e-Patient Dave Blogg: http://e-patients.net/archives/2009/04/imagine-if-someone-had-been-managing-your-data-and-then-you- looked.html “Okay, yes, HCTz is my blood pressure medication. But low potassium? That was true when I was hospitalized two years ago, not now. What’s going on?” 2009: “So I went into my patient portal, PatientSite, and clicked the button to do it<upload heath data to Google Health>. I checked the boxes for all the options and clicked Upload. It was pretty quick. But WTF? An alarm: “! Requires immediate attention” Fra: Ocean Informatics, 2014
  • 11. ePDaves Google-problemliste • Acidosis • Anxiety Disorder • Aortic Aneurysm • Arthroplasty - Hip, Total Replacemt • Bone Disease • CANCER • Cancer Metastasis to Bone • Cardiac Impairment • CHEST MASS • Chronic Lung Disease • Depressed Mood • DEPRESSION • Diarrhea • Elevated Blood Pressure • Hair Follicle Inflammation w Abscess in Sweat Gland Areas • HEALTH MAINTENANCE • HYDRADENITIS • HYPERTENSION • Inflammation of the Large Intestine • Intestinal Parasitic Infection • Kidney Problems Causing a Decreased Amount of Urine to be Passed • Lightheaded • Low Amount of Calcium in the Blood • Low Amount of Potassium in the Blood • Malignant Neoplastic Disease • Migraine Headache • MIGRAINES • Nausea and Vomiting • Nephrosis • PSYCH • Rash • Spread of Cancer to Brain or Spinal Cord • Swollen Lymph Nodes Date four months after diagnosis Correct date, triggered diagnosis No other items had a date… Fra: Ocean Informatics, 2014
  • 12. • Inflammation of the Large Intestine • Intestinal Parasitic Infection • Kidney Problems Causing a Decreased Amount of Urine to be Passed • Lightheaded • Low Amount of Calcium in the Blood • Low Amount of Potassium in the Blood • Malignant Neoplastic Disease • Migraine Headache • MIGRAINES • Nausea and Vomiting • Nephrosis • PSYCH • Rash • Spread of Cancer to Brain or Spinal Cord • Swollen Lymph Nodes • Acidosis • Anxiety Disorder • Aortic Aneurysm • Arthroplasty - Hip, Total Replacemt • Bone Disease • CANCER • Cancer Metastasis to Bone • Cardiac Impairment • CHEST MASS • Chronic Lung Disease • Depressed Mood • DEPRESSION • Diarrhea • Elevated Blood Pressure • Hair Follicle Inflammation w Abscess in Sweat Gland Areas • HEALTH MAINTENANCE • HYDRADENITIS • HYPERTENSION ePDaves Google-problemliste Related to vomiting during chemotherapy Never had! Never had! Self diagnosed optical migraine. No headache. Fra: Ocean Informatics, 2014
  • 13. • Inflammation of the Large Intestine • Intestinal Parasitic Infection • Kidney Problems Causing a Decreased Amount of Urine to be Passed • Lightheaded • Low Amount of Calcium in the Blood • Low Amount of Potassium in the Blood • Malignant Neoplastic Disease • Migraine Headache • MIGRAINES • Nausea and Vomiting • Nephrosis • PSYCH • Rash • Spread of Cancer to Brain or Spinal Cord • Swollen Lymph Nodes • Acidosis • Anxiety Disorder • Aortic Aneurysm • Arthroplasty - Hip, Total Replacemt • Bone Disease • CANCER • Cancer Metastasis to Bone • Cardiac Impairment • CHEST MASS • Chronic Lung Disease • Depressed Mood • DEPRESSION • Diarrhea • Elevated Blood Pressure • Hair Follicle Inflammation w Abscess in Sweat Gland Areas • HEALTH MAINTENANCE • HYDRADENITIS • HYPERTENSION ePDaves Google-problemliste Vague! Duplicate? Symptom or diagnosis? Persisting diagnosis? Related to Vomiting? What’s this? Temporary sign? Temporary symptom? Long term diagnosis or related to vomiting?
  • 14. “the system transmitted insurance billing codes to Google Health, not doctors’ diagnoses.” “I don’t want to get into the whole thing right now, but basically if a doc needs to bill insurance for something and the list of billing codes doesn’t happen to include exactly what your condition is, they cram it into something else so the stupid system will accept it.) (And, btw, everyone in the business is apparently accustomed to the system being stupid, so it’s no surprise that nobody can tell whether things are making any sense: nobody counts on the data to be meaningful in the first place.)” Fra: Ocean Informatics, 2014
  • 16. Terminologies vs information models Information models can be said to describe the "questions" Terminologies can give (some of) the "answers" Complementary concepts ICD_10::L40.0::Psoriasis vulgaris and SCT_2015::74757004::Skin structure of elbow SCT_2015::6736007::Moderate ???
  • 17. Where terminologies shine •Hundreds of thousands of concepts –Diagnoses, symptoms, lab results, body structures, organisms, procedures, … •Inference based on relations between concepts 1
  • 18. Where terminologies don’t shine •Context •Quantitative data types •Complex concepts 2
  • 19. Kontekst •"Let’s just chuck the codes in here so we can bill for this cancer treatment!" •15 years later, from the brand new Dr. Google: – "Ma’am, I’m sorry to tell you you have ovarian cancer." – "What!? They were taken out 15 years ago!" 2
  • 20. Quantitative data types •«Wouldn’t it be really nice to just have a code for the number of the pregnancy the woman is in…?" •"Yeah. 10 ought to be enough for anybody." Famous last words… 2
  • 21. Complex concepts •Combinatorial explosion –"Every kind of rash for every skin area" –Every combination of oral glucose challenge •Postcoordination may mitigate, but beware… 2
  • 22.
  • 23. Fra: Ocean Informatics, 2014 …in 601 different ways…
  • 24. …jo, på 601 forskjellige måter… Code Analyte name Timing Dose Route Sample material Substance Fra: Ocean Informatics, 2014
  • 25. …jo, på 601 forskjellige måter… Fra: Ocean Informatics, 2014
  • 26. Grey areas •Small value sets •Some contextual information –Actual diagnosis vs. tentative vs. risk vs. exclusion vs. family history •Consistent use is hard, and not always appropriate –Different use cases will have different requirements 2
  • 27. Some principles •When to use the information model? – Complex information (medication orders, family history, adverse reactions) – To define “questions”, not “answers” •When to use terminology? – Things that exist in real life (medications, body structures, substances, organisms) – To define ”answers”, for example value sets Fra: Ocean Informatics, 2014
  • 28. Terms defining “questions” in archetypes Fra: Ocean Informatics, 2014
  • 29. Terms as “answers” in templates •Standard values for elements •Value sets for dropdown lists •Finding complete value sets can be challenging…
  • 30. Cost effective terminology use •“Low hanging fruit” – Core terminologies • Problems/diagnoses (ICD, ICPC, ICNP, ICF, SNOMED CT, …) • Procedures (NCMP, NCSP, ICNP, SNOMED CT, ICHI, …) • Lab analyses (Laboratoriekodeverket, LOINC, SNOMED CT, …) • Symptoms (SNOMED CT, ?) • Medications (FEST, ATC, SNOMED CT, …) – Reusable in lots of data sets •Defining data elements only where there’s clear value •Standard values only where there’s clear value
  • 31. Summary •Terminologies are necessary additions to information models •…but terminologies can’t be used on their own •Grey areas -> pragmatic choices •Structuring and coding should be done when there’s clear value