SlideShare a Scribd company logo
1 of 24
Download to read offline
Department of Computer Science and Electronic Engineering, National Institute of Technology, Tokuyama College
雑音環境下音声を用いた音声合成のための
雑音生成モデルの敵対的学習
宇根昌和(徳山高専,東大),
齋藤佑樹,高道慎之介,北村大地(東大)
宮崎亮一(徳山高専),猿渡洋(東大)
• 音声合成
 人間のように自然な音声を人工的に生成する技術
• Deep Neural Network (DNN) に基づく
音声合成 [Zen, 2013]
 音声特徴量を統計的にモデル化
 テキスト特徴量から音声を生成するようモデルを学習
 学習には理想的な環境で収録した音声データが必須
研究背景
2/24
Linguistic
feature
Speech
feature
• 劣悪な環境下で収録した音声の利用は困難
 一般的な家庭環境で収録した場合 [高道, 2017]
→ 周囲の雑音の混入
 DNNの学習に雑音環境下音声を利用
→合成音声の品質が雑音によって劣化
• クリーンな音声の収録は容易ではない.
 手軽にスタジオのような設備は使えない.
問題点
3/24
雑音混入音声のみ存在する状況で
クリーンな音声を合成したい!
• 一般的な方法(従来手法):雑音抑圧を適用
 雑音抑圧を行った音声をモデルの学習に使用
 雑音抑圧による推定誤差が音声合成部で重畳
• 提案手法:雑音混入過程を考慮
 音声生成モデルと雑音生成モデルの2つのモデルを構築
問題に対するアプローチ
4/24
• 本発表
 雑音混入過程を考慮した枠組みを構築
 確率的に雑音を生成する雑音生成モデルを導入
→ 敵対的学習を用いて観測雑音の分布を効果的に表現
 音声生成モデルは,その出力と生成雑音の和が
雑音環境下音声に一致するように学習
• 結果
 雑音生成モデルは観測雑音の分布を効果的に表現
 雑音抑圧による音声合成と比較して高品質な音声の
合成に成功
概要
5/24
•
• 雑音抑圧による音声合成
•
•
•
目次
6/24
• Spectral subtraction (SS) [Boll, 1979]
従来手法における雑音抑圧手法
7/24
:SS後の信号の対数振幅スペクトル系列
:観測信号の対数振幅スペクトル系列
:観測雑音の対数振幅スペクトル系列
:減算係数
:雑音区間の総フレーム数
• モデルの枠組みと学習の方法
 モデルは入力コンテキスト系列 から
対数振幅スペクトル を生成する.
 とSS後の対数振幅スペクトル の平均二乗誤差
(Mean square error: MSE)を最小化するよう学習
雑音抑圧による音声合成
8/24
Linguistic
feat.
Noisy
speech
SS
• 雑音の分布を期待値で近似:推定誤差の発生
 音声成分の歪み
 ミュージカルノイズの発生 [Miyazaki, 2012]
- ミュージカルノイズ:聴覚的に不快な音
SS後の音声合成における問題点
9/24
後段の音声合成モデルの学習に推定誤差が蓄積
•
• 雑音抑圧による音声合成
• 提案手法
•
•
目次
10/24
• 雑音の混入過程を考慮
 音声生成モデル に加え雑音生成モデル を導入
 は既知の任意の事前分布を観測雑音の分布に
変形するように事前に学習( は事前分布から生成)
 は雑音生成モデルの出力と の出力との和が
雑音環境下音声に一致するよう学習
提案手法
11/24
• 雑音生成に敵対的学習(GAN)の導入
 と を交互に学習
雑音生成モデルの事前学習
12/24
:生成雑音 と観測雑音 を識別
[Goodfellow, 2014]
• 雑音生成に敵対的学習(GAN)の導入
 と を交互に学習
雑音生成モデルの事前学習
13/24
:生成雑音 を観測雑音と識別させる.
[Goodfellow, 2014]
• 敵対的学習は観測雑音と生成雑音の分布間
距離を最小化
• ガウス性雑音を観測雑音にした場合
観測雑音と生成雑音の比較
14/24
観測雑音
生成雑音
は観測雑音の分布や音色を効果的に表現できている.
• 敵対的学習により定常雑音を表現
 雑音の分布を効果的に表現
→ ミュージカルノイズなどの歪みを低減
• 学習方法の拡張が可能
 条件付きGAN[Mirza, 2012]
→コンテキスト依存性への対応
 リカレント構造を持つneural network生成モデルの導入
→ 時間構造の考慮
雑音生成モデルに関する考察
15/24
• 事前学習した を用いて を学習
 生成した雑音混入音声と観測信号のMSEを最小化
音声生成モデルの学習
16/24
•
• 雑音抑圧による音声合成
•
• 評価実験
•
目次
17/24
評価実験
18/24
• 目的
 雑音抑圧による音声合成と提案手法を比較し,
提案手法の有効性を示す.
• 比較手法
 SS+MSE: SSで雑音抑圧後,音声生成モデルを学習
 Proposed: 提案手法
実験条件
19/24
学習データ 日本語約3000文
テストデータ ATR音素バランス Jセット 53文
音声パラメータ 257次元のスペクトログラム
コンテキストラベル
439次元テキスト特徴量
+F0+UV+3次元継続長
ニューラルネットワーク 全てFeed-Forward (原稿参照)
雑音生成モデルの入力 一様分布からランダム生成
観測雑音 白色ガウス雑音
SSにおける減算係数 0.5, 1.0, 2.0, 5.0
入力SNR 0 [dB], 5 [dB], 10[dB]
評価法
プリファレンスABテスト
(各減算係数, SNRごとに25人の評価者)
• SNR = 0dBの結果
 音声の明瞭性+雑音の量の点で評価
実験結果
20/24
0.368 0.632
SS+MSE
(β = 0.5)
SS+MSE
(β = 1.0)
SS+MSE
(β = 2.0)
SS+MSE
(β = 5.0)
Proposed
0.312 0.688
0.312 0.688
0.00 0.25 0.50 0.75 1.00
Preference score
0.253 0.747
提案法は知覚的に従来法に比べ優れている.
• SNR = 5dBの結果
 音声の明瞭性+雑音の量の点で評価
実験結果
21/24
0.292 0.708
0.320 0.680
0.323 0.677
0.00 0.25 0.50 0.75 1.00
Preference score
0.216 0.784
SS+MSE
(β = 0.5)
SS+MSE
(β = 1.0)
SS+MSE
(β = 2.0)
SS+MSE
(β = 5.0)
Proposed
提案法は知覚的に従来法に比べ優れている.
• SNR = 10dBの結果
 音声の明瞭性+雑音の量の点で評価
実験結果
22/24
0.268 0.732
0.292 0.707
0.256 0.744
0.00 0.25 0.50 0.75 1.00
Preference score
0.288 0.712
SS+MSE
(β = 0.5)
SS+MSE
(β = 1.0)
SS+MSE
(β = 2.0)
SS+MSE
(β = 5.0)
Proposed
提案法は知覚的に従来法に比べ優れている.
•
• 雑音抑圧による音声合成
•
•
• まとめ
目次
23/24
• 目的
 雑音混入音声から高品質な音声を生成
• 提案法
 雑音混入過程を考慮したDNN音声合成モデルを構築
 雑音生成モデルに敵対的学習を導入し,観測雑音を生成
• 結果
 敵対的学習により,雑音生成モデルが観測雑音の分布を
効果的に表現
 主観評価実験より,従来法と比較して提案手法が有効
• 今後の課題
 当該話者以外のクリーン音声を用いた適応学習
まとめ
24/24

More Related Content

What's hot

深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術NU_I_TODALAB
 
ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向Yuma Koizumi
 
複数話者WaveNetボコーダに関する調査
複数話者WaveNetボコーダに関する調査複数話者WaveNetボコーダに関する調査
複数話者WaveNetボコーダに関する調査Tomoki Hayashi
 
深層学習と音響信号処理
深層学習と音響信号処理深層学習と音響信号処理
深層学習と音響信号処理Yuma Koizumi
 
異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例NU_I_TODALAB
 
音情報処理における特徴表現
音情報処理における特徴表現音情報処理における特徴表現
音情報処理における特徴表現NU_I_TODALAB
 
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...Deep Learning JP
 
GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)Yuki Saito
 
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~Yui Sudo
 
実環境音響信号処理における収音技術
実環境音響信号処理における収音技術実環境音響信号処理における収音技術
実環境音響信号処理における収音技術Yuma Koizumi
 
音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)Daichi Kitamura
 
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析Shinnosuke Takamichi
 
JVS:フリーの日本語多数話者音声コーパス
JVS:フリーの日本語多数話者音声コーパス JVS:フリーの日本語多数話者音声コーパス
JVS:フリーの日本語多数話者音声コーパス Shinnosuke Takamichi
 
Nakai22sp03 presentation
Nakai22sp03 presentationNakai22sp03 presentation
Nakai22sp03 presentationYuki Saito
 
Nishimura22slp03 presentation
Nishimura22slp03 presentationNishimura22slp03 presentation
Nishimura22slp03 presentationYuki Saito
 
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法NU_I_TODALAB
 
WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響NU_I_TODALAB
 
私がビギナーの頃を振り返って ~20代の代表として~
私がビギナーの頃を振り返って~20代の代表として~私がビギナーの頃を振り返って~20代の代表として~
私がビギナーの頃を振り返って ~20代の代表として~Shinnosuke Takamichi
 
音声合成のコーパスをつくろう
音声合成のコーパスをつくろう音声合成のコーパスをつくろう
音声合成のコーパスをつくろうShinnosuke Takamichi
 
論文紹介 wav2vec: Unsupervised Pre-training for Speech Recognition
論文紹介  wav2vec: Unsupervised Pre-training for Speech Recognition論文紹介  wav2vec: Unsupervised Pre-training for Speech Recognition
論文紹介 wav2vec: Unsupervised Pre-training for Speech RecognitionYosukeKashiwagi1
 

What's hot (20)

深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術
 
ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向
 
複数話者WaveNetボコーダに関する調査
複数話者WaveNetボコーダに関する調査複数話者WaveNetボコーダに関する調査
複数話者WaveNetボコーダに関する調査
 
深層学習と音響信号処理
深層学習と音響信号処理深層学習と音響信号処理
深層学習と音響信号処理
 
異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例異常音検知に対する深層学習適用事例
異常音検知に対する深層学習適用事例
 
音情報処理における特徴表現
音情報処理における特徴表現音情報処理における特徴表現
音情報処理における特徴表現
 
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
 
GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)
 
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
 
実環境音響信号処理における収音技術
実環境音響信号処理における収音技術実環境音響信号処理における収音技術
実環境音響信号処理における収音技術
 
音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)
 
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
やさしく音声分析法を学ぶ: ケプストラム分析とLPC分析
 
JVS:フリーの日本語多数話者音声コーパス
JVS:フリーの日本語多数話者音声コーパス JVS:フリーの日本語多数話者音声コーパス
JVS:フリーの日本語多数話者音声コーパス
 
Nakai22sp03 presentation
Nakai22sp03 presentationNakai22sp03 presentation
Nakai22sp03 presentation
 
Nishimura22slp03 presentation
Nishimura22slp03 presentationNishimura22slp03 presentation
Nishimura22slp03 presentation
 
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
楽曲中歌声加工における声質変換精度向上のための歌声・伴奏分離法
 
WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響WaveNetが音声合成研究に与える影響
WaveNetが音声合成研究に与える影響
 
私がビギナーの頃を振り返って ~20代の代表として~
私がビギナーの頃を振り返って~20代の代表として~私がビギナーの頃を振り返って~20代の代表として~
私がビギナーの頃を振り返って ~20代の代表として~
 
音声合成のコーパスをつくろう
音声合成のコーパスをつくろう音声合成のコーパスをつくろう
音声合成のコーパスをつくろう
 
論文紹介 wav2vec: Unsupervised Pre-training for Speech Recognition
論文紹介  wav2vec: Unsupervised Pre-training for Speech Recognition論文紹介  wav2vec: Unsupervised Pre-training for Speech Recognition
論文紹介 wav2vec: Unsupervised Pre-training for Speech Recognition
 

Similar to 雑音環境下音声を用いた音声合成のための雑音生成モデルの敵対的学習

日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)
日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)
日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)Shinnosuke Takamichi
 
モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用
モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用
モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用Shinnosuke Takamichi
 
DNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズム
DNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズムDNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズム
DNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズムShinnosuke Takamichi
 
多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調
多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調
多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調Shinnosuke Takamichi
 
空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法
空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法
空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法NU_I_TODALAB
 
カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調
カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調  カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調
カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調 Shinnosuke Takamichi
 

Similar to 雑音環境下音声を用いた音声合成のための雑音生成モデルの敵対的学習 (7)

日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)
日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)
日本音響学会2018春 ”雑音環境下音声を用いたDNN音声合成のための雑音生成モデルの敵対的学習” (宇根)
 
モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用
モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用
モーメントマッチングに基づくDNN 合成歌声のランダム変調ポストフィルタとニューラルダブルトラッキングへの応用
 
DNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズム
DNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズムDNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズム
DNNテキスト音声合成のためのAnti-spoofingに敵対する学習アルゴリズム
 
Slp201702
Slp201702Slp201702
Slp201702
 
多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調
多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調
多様なカートシスを持つ雑音に対応した低ミュージカルノイズ DNN 音声強調
 
空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法
空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法
空気/体内伝導マイクロフォンを用いた雑音環境下における自己発声音強調/抑圧法
 
カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調
カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調  カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調
カートシスマッチングと深層学習に基づく低ミュージカルノイズ音声強調
 

More from Shinnosuke Takamichi

JTubeSpeech: 音声認識と話者照合のために YouTube から構築される日本語音声コーパス
JTubeSpeech:  音声認識と話者照合のために YouTube から構築される日本語音声コーパスJTubeSpeech:  音声認識と話者照合のために YouTube から構築される日本語音声コーパス
JTubeSpeech: 音声認識と話者照合のために YouTube から構築される日本語音声コーパスShinnosuke Takamichi
 
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパスJ-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパスShinnosuke Takamichi
 
短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討Shinnosuke Takamichi
 
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法Shinnosuke Takamichi
 
ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)
ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)
ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)Shinnosuke Takamichi
 
国際会議 interspeech 2020 報告
国際会議 interspeech 2020 報告国際会議 interspeech 2020 報告
国際会議 interspeech 2020 報告Shinnosuke Takamichi
 
Interspeech 2020 読み会 "Incremental Text to Speech for Neural Sequence-to-Sequ...
Interspeech 2020 読み会 "Incremental Text to Speech for Neural  Sequence-to-Sequ...Interspeech 2020 読み会 "Incremental Text to Speech for Neural  Sequence-to-Sequ...
Interspeech 2020 読み会 "Incremental Text to Speech for Neural Sequence-to-Sequ...Shinnosuke Takamichi
 
P J S: 音素バランスを考慮した日本語歌声コーパス
P J S: 音素バランスを考慮した日本語歌声コーパスP J S: 音素バランスを考慮した日本語歌声コーパス
P J S: 音素バランスを考慮した日本語歌声コーパスShinnosuke Takamichi
 
音響モデル尤度に基づくsubword分割の韻律推定精度における評価
音響モデル尤度に基づくsubword分割の韻律推定精度における評価音響モデル尤度に基づくsubword分割の韻律推定精度における評価
音響モデル尤度に基づくsubword分割の韻律推定精度における評価Shinnosuke Takamichi
 
音声合成研究を加速させるためのコーパスデザイン
音声合成研究を加速させるためのコーパスデザイン音声合成研究を加速させるためのコーパスデザイン
音声合成研究を加速させるためのコーパスデザインShinnosuke Takamichi
 
論文紹介 Unsupervised training of neural mask-based beamforming
論文紹介 Unsupervised training of neural  mask-based beamforming論文紹介 Unsupervised training of neural  mask-based beamforming
論文紹介 Unsupervised training of neural mask-based beamformingShinnosuke Takamichi
 
論文紹介 Building the Singapore English National Speech Corpus
論文紹介 Building the Singapore English National Speech Corpus論文紹介 Building the Singapore English National Speech Corpus
論文紹介 Building the Singapore English National Speech CorpusShinnosuke Takamichi
 
論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages
論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages
論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource LanguagesShinnosuke Takamichi
 
話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価
話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価
話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価Shinnosuke Takamichi
 
差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定
差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定
差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定Shinnosuke Takamichi
 
音声合成・変換の国際コンペティションへの 参加を振り返って
音声合成・変換の国際コンペティションへの  参加を振り返って音声合成・変換の国際コンペティションへの  参加を振り返って
音声合成・変換の国際コンペティションへの 参加を振り返ってShinnosuke Takamichi
 
ユーザ歌唱のための generative moment matching network に基づく neural double-tracking
ユーザ歌唱のための generative moment matching network に基づく neural double-trackingユーザ歌唱のための generative moment matching network に基づく neural double-tracking
ユーザ歌唱のための generative moment matching network に基づく neural double-trackingShinnosuke Takamichi
 
End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割
End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割
End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割Shinnosuke Takamichi
 
統計的ボイチェン研究事情
統計的ボイチェン研究事情統計的ボイチェン研究事情
統計的ボイチェン研究事情Shinnosuke Takamichi
 
テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)
テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)
テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)Shinnosuke Takamichi
 

More from Shinnosuke Takamichi (20)

JTubeSpeech: 音声認識と話者照合のために YouTube から構築される日本語音声コーパス
JTubeSpeech:  音声認識と話者照合のために YouTube から構築される日本語音声コーパスJTubeSpeech:  音声認識と話者照合のために YouTube から構築される日本語音声コーパス
JTubeSpeech: 音声認識と話者照合のために YouTube から構築される日本語音声コーパス
 
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパスJ-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
 
短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討
 
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
リアルタイムDNN音声変換フィードバックによるキャラクタ性の獲得手法
 
ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)
ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)
ここまで来た&これから来る音声合成 (明治大学 先端メディアコロキウム)
 
国際会議 interspeech 2020 報告
国際会議 interspeech 2020 報告国際会議 interspeech 2020 報告
国際会議 interspeech 2020 報告
 
Interspeech 2020 読み会 "Incremental Text to Speech for Neural Sequence-to-Sequ...
Interspeech 2020 読み会 "Incremental Text to Speech for Neural  Sequence-to-Sequ...Interspeech 2020 読み会 "Incremental Text to Speech for Neural  Sequence-to-Sequ...
Interspeech 2020 読み会 "Incremental Text to Speech for Neural Sequence-to-Sequ...
 
P J S: 音素バランスを考慮した日本語歌声コーパス
P J S: 音素バランスを考慮した日本語歌声コーパスP J S: 音素バランスを考慮した日本語歌声コーパス
P J S: 音素バランスを考慮した日本語歌声コーパス
 
音響モデル尤度に基づくsubword分割の韻律推定精度における評価
音響モデル尤度に基づくsubword分割の韻律推定精度における評価音響モデル尤度に基づくsubword分割の韻律推定精度における評価
音響モデル尤度に基づくsubword分割の韻律推定精度における評価
 
音声合成研究を加速させるためのコーパスデザイン
音声合成研究を加速させるためのコーパスデザイン音声合成研究を加速させるためのコーパスデザイン
音声合成研究を加速させるためのコーパスデザイン
 
論文紹介 Unsupervised training of neural mask-based beamforming
論文紹介 Unsupervised training of neural  mask-based beamforming論文紹介 Unsupervised training of neural  mask-based beamforming
論文紹介 Unsupervised training of neural mask-based beamforming
 
論文紹介 Building the Singapore English National Speech Corpus
論文紹介 Building the Singapore English National Speech Corpus論文紹介 Building the Singapore English National Speech Corpus
論文紹介 Building the Singapore English National Speech Corpus
 
論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages
論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages
論文紹介 SANTLR: Speech Annotation Toolkit for Low Resource Languages
 
話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価
話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価
話者V2S攻撃: 話者認証から構築される 声質変換とその音声なりすまし可能性の評価
 
差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定
差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定
差分スペクトル法に基づく DNN 声質変換の計算量削減に向けたフィルタ推定
 
音声合成・変換の国際コンペティションへの 参加を振り返って
音声合成・変換の国際コンペティションへの  参加を振り返って音声合成・変換の国際コンペティションへの  参加を振り返って
音声合成・変換の国際コンペティションへの 参加を振り返って
 
ユーザ歌唱のための generative moment matching network に基づく neural double-tracking
ユーザ歌唱のための generative moment matching network に基づく neural double-trackingユーザ歌唱のための generative moment matching network に基づく neural double-tracking
ユーザ歌唱のための generative moment matching network に基づく neural double-tracking
 
End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割
End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割
End-to-end 韻律推定に向けた DNN 音響モデルに基づく subword 分割
 
統計的ボイチェン研究事情
統計的ボイチェン研究事情統計的ボイチェン研究事情
統計的ボイチェン研究事情
 
テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)
テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)
テキスト音声合成技術と多様性への挑戦 (名古屋大学 知能システム特論)
 

雑音環境下音声を用いた音声合成のための雑音生成モデルの敵対的学習