Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Trigonometric graphs

1,114 views

Published on

Trig Graphs

Published in: Education
  • Be the first to comment

Trigonometric graphs

  1. 1. Block 3 Trigonometric Graphs
  2. 2. What is to be learned? • A reminder of how to draw and identify trig graphs. • Take it a bit further.
  3. 3. 90 180 270 360 1 0 -1 Y = sinx Maximum Value = 1 Minimum Value = -1
  4. 4. 90 180 270 360 1 0 -1 Y = cosx Maximum Value = 1 Minimum Value = -1
  5. 5. 90 180 270 360 7 0 -7 Y = 7sinx Maximum Value = 7 Minimum Value = -7 Range = Max - Min Range = 7 – (-7) = 14 →range = 14 Range
  6. 6. 90 180 270 360 4 0 -4 Y = 4cosx Maximum Value = 4 Minimum Value = -4 →range = 8
  7. 7. 90 180 270 360 8 0 -8 Y = - 8sinx Maximum Value = 8 Minimum Value = -8 “Opposite” to Sin x
  8. 8. 90 180 270 360 6 0 -6 Y = - 6cosx Maximum Value = 6 Minimum Value = -6 “Opposite” to Cos x
  9. 9. 900 1800 2700 3600 900 1800 2700 3600 3 -3 6 -6 Write the Equations 1. 2. y = -3sinx y = -6cosx y = 9sinx y = cosx 3. 4. 9 -9 1 -1 900 1800 2700 3600 900 1800 2700 3600
  10. 10. 90 180 270 360 1 0 -1 Y = sin x 540450 Period of graph is 3600 Cycle starts again Also applies to Y = cos x Between 00 and 3600 there is 1 cycle Taking it Further
  11. 11. 90 180 270 360 1 0 -1 Y = sin 2x Period of graph is 1800 There are 2 cycles between 00 and 3600
  12. 12. Combining these rules Draw y = 6sin2x Max 6 Min -6 2 cycles Period = 360 ÷ 2 = 1800 90 180 270 360 6 0 -6 Y = 6sin 2x
  13. 13. Recognising Graph Max 8 Min -8 4 cycles 90 180 270 360 8 0 -8 Y = 8cos4x Cosine
  14. 14. 900 1800 2700 3600 900 1800 2700 3600 900 1800 2700 3600 900 1800 2700 3600 7 -7 5 -5 3 - 3 2 -2 Write the Equations 1. 2. 3. 4. y = 7sin2x y = 5cos2x y = 3cos4x y = 2sin3x
  15. 15. Changing the Scale Nice for Drawing Graphs  y = 4 Sin 6x Cycles? Period 6 360 ÷ 6 = 600 15 30 45 60 4 0 -4
  16. 16. 300 600 900 1200 7 Not so nice for recognising graphs  Period = 1200 No of Cycles in 360? 360 ÷ 120 = 3 y = 7 cos 3x 2400 3600
  17. 17. Find equation of graph below. Cycles Max 7 Negative sin 360 ÷ 60 = 6 15 30 45 60 7 0 -7 y = -7sin6x
  18. 18. Remember rules for y = (x – 3 )2 + 5 Same rules for trig graphs! 3 units to right Up 5 Extra Trig Graph Rules
  19. 19. 90 180 270 360 4 0 -4 Y = 4cos (x – 450 ) 450 Y = 4cosx 450 to right Sketch Normal Graph Move each point right/left y =4cos(x – 450 )
  20. 20. 90 180 270 360 11 0 -11 Recognising Sin Graph 300 to right y = 11 sin(x – 300 ) 300
  21. 21. 90 180 270 360 13 0 -13 Recognising Cos Graph 200 to left y = 13 cos(x + 200 ) -200
  22. 22. 90 180 270 360 11 0 -11 A Bit of Confusion Sin Graph 300 to left y = 11 sin(x + 300 ) -300 600 Cos Graph 600 to right y = 11 cos(x – 600 ) Both correct
  23. 23. 6 -6 y = 6cos(x + 300 ) -300 Identify this graph 900 1800 2700 3600
  24. 24. 90 180 270 360 1 0 -1 Y = sinx + 2 Y = sinx 2 3
  25. 25. 90 180 270 360 4 0 -4 Y = 4cosx + 6 8 12 range = 8 Graph Type y = 4cosx 2 6 10 -2 Equation?
  26. 26. 90 180 270 360 0 No Maximum (or minimum) What about y = Tanx ??? Goes to infinity Cycle complete Period is 1800
  27. 27. 90 180 270 360 0 Changing the period Cycle complete Normal Period is 1800 2 cycles y = tan2x
  28. 28. 90 180 270 360 0 y = -Tanx
  29. 29. Also Can now use radians!
  30. 30. 90 180 270 360 1 0 -1 Y = sinx π /2 π 3π /2 2π
  31. 31. Trigonometric Graphs Follow all the same rules as other function graphs. Range is handy for identifying (max – min) e.g. for y = 7sinx →range = 14
  32. 32. π /2 π 2π 2 0 -2 y = 2cos(x – π /4) 4 6 y = 2cosx Sketch y = 2cos(x – π /4) + 1 y = 2cos(x – π /4) + 1 3π /2
  33. 33. 0 -2 -4 Sketch y = 3sin(x + π /4) – 1 Y = 3sinx 2 4 Y = 3sin(x + π /4) Y = 3sin(x + π /4) – 1 Key Question 2π 3π /2ππ /2

×