Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Fear Factor Metrics: PR Metrics Communicators Fear Most

Presentation given at PR News Measurement Conference in Chicago on November 18, 2015. Covers key measurement concepts including Share of Voice (SOV), Competitive Benchmarking & Correlations

Related Books

Free with a 30 day trial from Scribd

See all
  • Be the first to comment

Fear Factor Metrics: PR Metrics Communicators Fear Most

  1. 1. FEAR  FACTOR  METRICS:  A  LOOK  AT  THE   METRICS  COMMUNICATORS  FEAR  THE  MOST   Sandra  Fathi   President   Affect   @sandrafathi     web:  affect.com   blog:  techaffect.com   email:  sfathi@affect.com     PR  News  Measurement  Conference   Chicago,  November  18,  2015   Slides:  www.slideshare.net/sfathi  
  2. 2. ABOUT  ME   •  Sandra  Fathi   •  President,  Affect   •  Public  RelaKons,  Social  Media,   MarkeKng   •  Board  Council  of  PR  Firms   •  PRSA  Past  PosiKons:   –  Tri-­‐State  Chair   –  NY  Chapter  President   –  Technology  SecKon  Chair   •  Board  PRSA-­‐NY   2  @sandrafathi  
  3. 3. Technology Healthcare Professional Services:     SAMPLE  PAST  &  PRESENT     CLIENTS   @sandrafathi  
  4. 4. MEASUREMENT  &   METRICS     Measurement Objectives 1. Proving value of public relations activities 2. Proving ongoing improvement in performance 3. Securing headcount/budget for programs 4. Demonstrating ROI compared with true business metrics Holy Grail: PR = Sales @sandrafathi  
  5. 5. 5   PR  MEASUREMENT   Sample  Business  Metrics   •  Market  PenetraKon   •  Market  Share   •  Lead  GeneraKon   •  Revenue   •  Cost-­‐Savings   Sample  MarkeKng  Metrics   •  Traffic  to  Website   •  Downloads   •  RegistraKons   •  Lead  GeneraKon   Measure  what  maYers  to  the  C-­‐Suite   In  a  language  they  understand  –  and  value   @sandrafathi  
  6. 6. MEASUREMENT  &   METRICS     Sample  PR  Key  Performance  Indicators  (KPIs):   1. Scores: Indices/scoring mechanisms to track valuable outcomes/results •  Quantity: sheer volume of media hits •  Quality: score for Tier 1,2,3, score for feature, prominent, mention 2. Correlations: Between outputs, outcomes and business results. •  Track events with lead generation (online, email, phone, events) •  Track PR/social events with Web traffic 3. Check Boxes: Meeting specific, finite objectives •  # of articles/month •  # of articles in target industries/vertical markets •  # of press releases per year •  # of members/attendees/downloads/registrations (hard numbers) @sandrafathi  
  7. 7. PR  MEASUREMENT   Three  Concepts  for  Discussions:     •  Share  of  Voice   •  CompeKKve  Benchmarking   •  CorrelaKons   @sandrafathi   7  
  8. 8. PART  I:  SHARE  OF  VOICE  
  9. 9. DEFINITION   Share  of  Voice:     Comparing  your  crucial  performance  metrics  against   those  of  compeKtors  or  the  market.       •  You  have  to  measure  something   •  What  you  measure  needs  to  be  analyzed   proporKonately  against  compeKtor  data  (or  market   data)  to  establish  market  share   @sandrafathi   9  
  10. 10. THE  FORMULA       Number  of  ConversaKons  That   Include  Your  Company                              =    X  *  100  =  %  SOV   Total  ConversaKons  on  a  Topic   @sandrafathi   10  
  11. 11. ADVERTISING  CONCEPT   25%  SOV   75%  SOV   @sandrafathi   11  
  12. 12. SHARE  OF  VOICE  I   72%   28  %   Total  ConversaKons   Talk   About  Me   @sandrafathi   12  
  13. 13. SHARE  OF  VOICE  II   0%   10%   20%   30%   40%   50%   60%   70%   80%   90%   100%   Q1   Q2   Q3   Q4   CompeKtor  C   CompeKtor  B   CompeKtor  A   Our  Company   @sandrafathi   13  
  14. 14. KEEP  IN  MIND   •  Share  of  voice  should  be  defined  for  a  period  of  Kme   (finite  start  and  end).   •  Share  of  voice  is  omen  most  useful  when  limited  to  a   single  planorm  or  medium.  For  example,  business   press  coverage  or  TwiYer.   •  Share  of  voice  can  be  overwhelming  if  trying  to  look   at  too  large  a  segment  or  industry.  Try  choosing  SOV   among  top  compeKtors  or  in  key  interest  areas.     @sandrafathi   14  
  15. 15. SOV:  SOCIAL  MEDIA   ANALYTICS  PLATFORMS   @sandrafathi   15  
  16. 16. SOCIAL  MENTION   @sandrafathi   16  
  17. 17. SIMPLE  EXCEL  FORMULA   @sandrafathi   17  
  18. 18. ONLY  PART  OF  THE  STORY   •  Doesn’t  consider  senKment   •  Doesn’t  consider  sources   (exclude  self  produced/owned   media)   •  Doesn’t  consider  quality,  only   quanKty  (Is  NYT  blog  same  as   obscure  geek’s  tweet?)   •  Don’t  accept  the  data  blindly  –   human  verificaKon  is  required   with  any  tool   @sandrafathi   18  
  19. 19. OTHER  APPLICATIONS  &   CONSIDERATIONS   ConsideraKons:   •  Apply  senKment  or  tonal  filters  (posiKve/negaKve)   •  Apply  qualitaKve  measures  (by  Ker  or  by  type)   ApplicaKons:   •  Industry  trends/hot  topics  (i.e.  SOV  on  cloud  security)   •  Specific  products  or  services   •  Broken  down  by  geographic  or  demographic  parameters   (i.e.  SOV  in  18-­‐25  market)   @sandrafathi   19  
  20. 20. PART  II:  COMPETITIVE  BENCHMARKING  
  21. 21. DEFINITION   CompeKKve  Benchmarking:     The  conKnuous  pracKce  of  comparing  a  company’s   pracKces  and  performance  metrics  against  the  most   successful  compeKtors  in  the  industry.     •  You  measure  processes  and  results   •  You  must  idenKfy  a  ‘benchmark’  or  indicator  that  will  be   a  unit  of  measure  to  compare   •  The  desired  outcome  is  to  understand  which  processes   lead  to  greater  success  (best  pracKces)  in  order  to   improve  your  company’s  performance   @sandrafathi   21  
  22. 22. COMPETITIVE     BENCHMARKING   •  IdenKfy  my  compeKKve  set  for  comparison   •  Choose  my  units  of  measure:  press  coverage   •  Set  parameters:  top  20  business  and  trade   •  Define  a  Kme  period:  6  months   •  Choose  a  tool  (news  monitoring  service)  or  begin   manual  research   @sandrafathi   22  
  23. 23. EXAMPLE:  RADWARE   ObjecKve:       •  Build  &  Maintain  Radware’s  PosiKon  as  a  Thought  Leader  on   Security   •  Maximize  Radware’s  Overall  Public  RelaKons  Results     Strategy:     •  Compare  and  Contrast  Radware’s  Press  Release  Output  with  Top   3  Security  CompeKtors   •  Analyze  Results   •  Apply  Best  PracKces  and  Lessons  Learned  to  Radware  to  Improve   Overall  Performance   @sandrafathi   23  
  24. 24. EXAMPLE:  RADWARE   Network  Security   CompeKtors     @sandrafathi   24  
  25. 25. •  Analysis  of  press  release  strategy  and  resulKng   coverage  over  6  month  period   •  Specifically  as  it  relates  to  relevant  products  or   business  units   •  Only  in  top  20  business  and  industry/sector   publicaKons   METHODOLOGY   @sandrafathi   25  
  26. 26. RADWARE  PRESS  RELEASES   Security   43%   ADC   27%   Both*   12%   Other*   18%   Press  Releases   *  ‘Both’  includes  releases  related  to  both  security   and  ADC,  ‘Other’  includes  non-­‐product  releases  (e.g.   company  news,  financial  announcements  etc.)   Press  Releases   Security   14   ADC   9   Both   2     Other   6   @sandrafathi   26  
  27. 27. SECURITY  COMPETITORS   14   23   28   10   84   164   68   68   0   20   40   60   80   100   120   140   160   180   Radware   Arbor   Imperva   Prolexic   Press  Releases   ArKcles   PRESS  RELEASES  VS.  NUMBER  OF  ARTICLES   @sandrafathi   27  
  28. 28. SECURITY  COVERAGE  BY   TYPE   0   50   100   150   200   Radware   Arbor   Imperva   Prolexic   Other   Report   Commentary   AYack   AcquisiKon   Partner   Customer   Product   Customer   Partner   AcquisiKon   AYack   Commentary   Report   Other   Radware     8     9     6   0   28     22     11   2     Arbor     19     1   1   18     29     44     52   0   Imperva     2     1     1     0     8     18     19   19     Prolexic     0     0   0   0     43     2     14     9     @sandrafathi   28  
  29. 29. COVERAGE  BY  QUALITY   0   20   40   60   80   100   120   140   160   180   Radware   Arbor   Imperva   Prolexic   MenKons   Features   35%   65%   31%   69%   34%   66%   54%   46%   FEATURE  VS.  MENTION   @sandrafathi   29  
  30. 30. SECURITY  CONCLUSIONS   •  Radware  is  #2  in  overall  SOV  but  the  quality  is  not  as   strong  (more  menKons  vs.  features)   •  Leading  customer  and  partner  conversaKons   (ValidaKon)   •  Good  job  at  Story  Hijacking  (responding  to  security   hacks)  but  room  for  improvement  (ValidaKon)   •  CompeKtors  winning  at  report  coverage  and   commentary  (Opportunity!)   @sandrafathi   30  
  31. 31. CONSIDERATIONS   •  Good  for  understanding  what  worked  but  not   necessarily  ‘how’  it  worked   •  Costs  for  research  may  outweigh  benefits  of  insights   •  Once  you’ve  idenKfied  the  ‘best  pracKces’  you  may   or  may  not  be  able  to  replicate  them   •  Consider  non-­‐compeKtor  companies  to  benchmark   •  Do  you  want  to  ‘emulate’  or  ‘innovate’?   @sandrafathi   31  
  32. 32. PART  III:  CORRELATIONS  
  33. 33. DEFINITION   CorrelaKon:     A  mutual  relaKonship,  or  interdependence,  between  two  or   more  things.       •  In  the  absence  of  being  able  to  prove  ‘causality’  you  may   be  able  to  demonstrate  a  ‘correlaKon’  to  demonstrate   the  impact  of  a  PR  or  markeKng  program   •  A  correlaKon  is  posiKve  when  the  values  of  both   variables  increase  together   •  A  correlaKon  is  negaKve  when  the  value  of  one  variable     increases  while  the  value  of  the  other  variable  decreases   @sandrafathi   33  
  34. 34. TYPES  OF  CORRELATION   Source:  MathisFun.com   34  
  35. 35. THE  FORMULA   35   Pearson’s  CorrelaKon:   @sandrafathi  
  36. 36. FUNCTION  IN  EXCEL   36  @sandrafathi  
  37. 37. CORRELATION  IN  EXCEL   37  @sandrafathi  
  38. 38. FUNCTION  IN  EXCEL   38  @sandrafathi  
  39. 39. SCATTER  CHART   39  @sandrafathi  
  40. 40. LINE  CHART   40  @sandrafathi   AcquisiKon  
  41. 41. MULTIPLE  DATA  SETS   41  @sandrafathi   0   500   1000   1500   2000   2500   3000   3500   4000   4500   Q1   Q2   Q3   Q4   Sales   Web  Traffic   Press  Coverage  
  42. 42. SPURIOUS  CORRELATION   42  @sandrafathi   Source:  TylerVigen.com  
  43. 43. 43  @sandrafathi   Source:  TylerVigen.com   SPURIOUS  CORRELATION  
  44. 44. CONSIDERATIONS   •  User  correlaKons  cauKously  and  don’t  trust  the  math   blindly   •  The  visuals  omen  tell  a  story  as  well   •  Remember  that  correlaKon  is  not  causality,  it  can   only  help  as  an  indicator  or  potenKally  predict   probability   •  Data  is  sKll  beYer  that  your  opinion   44  @sandrafathi  
  45. 45. FINAL  THOUGHTS   •  In  measurement,  speak  the  language  of  the  C-­‐Suite   •  Excel  is  sKll  the  best  dashboard  for  data  visualizaKon   •  Don’t  be  afraid  to  learn  that  you  are  wrong   •  Don’t  be  afraid  to  change  direcKon   •  Use  the  data  to  gain  execuKve  support     –  Strategy   –  Resources   –  Headcount   –  Budget   45  @sandrafathi  
  46. 46. THANK  YOU     CONTACT:   Sandra  Fathi   President   Affect   @sandrafathi     web:  affect.com   blog:  techaffect.com   email:  sfathi@affect.com     Slides:  www.slideshare.net/sfathi  

×