Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Soumith Chintala is a Researcher at Facebook AI Research, where he works on deep learning, reinforcement learning, generative image models, agents for video games and large-scale high-performance deep learning. Prior to joining Facebook in August 2014, he worked at MuseAmi, where he built deep learning models for music and vision targeted at mobile devices. He holds a Masters in CS from NYU, and spent time in Yann LeCun’s NYU lab building deep learning models for pedestrian detection, natural image OCR, depth-images among others.
Abstract Summary:
Dynamic Deep Learning: a paradigm shift in AI research and tools:
AI research has seen many shifts in the last few years. We’ve seen research go from using static datasets such as Imagenet to being more dynamic and online in self-driving cars, robots and game-playing.Many dynamic environments such as Universe and Starcraft are being used in AI research to solve problems pertaining to reinforcement learning and online learning. In this talk, I shall discuss these shifts in research. Tools such as PyTorch, DyNet and Chainer have popped up to cope up with the paradigm shift, enabling cutting-edge AI, and I shall discuss these as well.
Login to see the comments