SlideShare a Scribd company logo

データサイエンス概論第一 5 時系列データの解析

九州大学大学院システム情報科学研究院「データサイエンス実践特別講座」が贈る,数理・情報系『でない』学生さんのための「データサイエンス講義

1 of 43
Download to read offline
1
九州大学大学院システム情報科学研究院
データサイエンス実践特別講座
データサイエンス概論第一
第5回 時系列データの解析
システム情報科学研究院情報知能工学部門
内田誠一
2
データサイエンス概論第一の内容
 データとは
 データのベクトル表現と集合
 平均と分散
 データ間の距離
 データ間の類似度
 データのクラスタリング
(グルーピング)
 線形代数に基づくデータ解析の基礎
 主成分分析と因子分析
 回帰分析
 相関・頻度・ヒストグラム
 確率と確率分布
 信頼区間と統計的検定
 時系列データの解析
 異常検出
3
フーリエ解析
ベクトルの分解と合成がわかっていれば,恐れるに足らず!
時系列データもベクトル.同様に分解合成できるんです.
44
【再掲】時々刻々と得られる系列データ
=時系列データ
 動画像
 行動,ジェスチャ,歩行,ゲーム操作
 音声信号.対話系列
 心拍数変化,呼気量変化
 環境中のNOx濃度変化,気温変化
 10年ごとに測定した世界人口
時間
姿勢(左手高さ)
5
周波数=繰り返し周期の逆数
周波数低い
周波数高い
6
驚きの事実:時系列データは,
周波数の異なるsin波・cos波の和に分解可能!
=
+
+
+
...
時間 t
t
t
t
どんなに
不規則そうな
時系列データでも
規則的な成分に
完全に分解できる!

Recommended

データサイエンス概論第一=2-1 データ間の距離と類似度
データサイエンス概論第一=2-1 データ間の距離と類似度データサイエンス概論第一=2-1 データ間の距離と類似度
データサイエンス概論第一=2-1 データ間の距離と類似度Seiichi Uchida
 
4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度Seiichi Uchida
 
データサイエンス概論第一=1-2 データのベクトル表現と集合
データサイエンス概論第一=1-2 データのベクトル表現と集合データサイエンス概論第一=1-2 データのベクトル表現と集合
データサイエンス概論第一=1-2 データのベクトル表現と集合Seiichi Uchida
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知Chika Inoshita
 
分割時系列解析(ITS)の入門
分割時系列解析(ITS)の入門分割時系列解析(ITS)の入門
分割時系列解析(ITS)の入門Koichiro Gibo
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法Hidetoshi Matsui
 

More Related Content

What's hot

『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会takehikoihayashi
 
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎Seiichi Uchida
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論Koichiro Gibo
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定Akira Masuda
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法Deep Learning JP
 
データサイエンス概論第一=3-2 主成分分析と因子分析
データサイエンス概論第一=3-2 主成分分析と因子分析データサイエンス概論第一=3-2 主成分分析と因子分析
データサイエンス概論第一=3-2 主成分分析と因子分析Seiichi Uchida
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Takashi J OZAKI
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門Miyoshi Yuya
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木 Miyoshi Yuya
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)Satoshi Hara
 
距離とクラスタリング
距離とクラスタリング距離とクラスタリング
距離とクラスタリング大貴 末廣
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習Seiichi Uchida
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理Masatoshi Yoshida
 
データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎Hirotaka Hachiya
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知Yuya Takashina
 

What's hot (20)

『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
 
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法
 
データサイエンス概論第一=3-2 主成分分析と因子分析
データサイエンス概論第一=3-2 主成分分析と因子分析データサイエンス概論第一=3-2 主成分分析と因子分析
データサイエンス概論第一=3-2 主成分分析と因子分析
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
距離とクラスタリング
距離とクラスタリング距離とクラスタリング
距離とクラスタリング
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理
 
データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎
 
リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析
リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析
リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析
 
因果推論の基礎
因果推論の基礎因果推論の基礎
因果推論の基礎
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知
 

Similar to データサイエンス概論第一 5 時系列データの解析

順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング. .
 
コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析yamahige
 
データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出Seiichi Uchida
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tatsuya Tojima
 
2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演
2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演
2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演Ryuichi Ueda
 
反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するか反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するかSAKAUE, Tatsuya
 
自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立
自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立
自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立Ichiro Hasuo
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual TalksYuya Unno
 
2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率
2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率
2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率Tatsuji Takahashi
 
Casual datascience vol3
Casual datascience vol3Casual datascience vol3
Casual datascience vol3KazuhiroSato8
 
Yokozuna 日本語検索機能を評価しました
Yokozuna 日本語検索機能を評価しましたYokozuna 日本語検索機能を評価しました
Yokozuna 日本語検索機能を評価しましたTakashi Sogabe
 
データサイエンス概論第一=1-1 データとは
データサイエンス概論第一=1-1 データとはデータサイエンス概論第一=1-1 データとは
データサイエンス概論第一=1-1 データとはSeiichi Uchida
 
データサイエンス概論第一=2-2 クラスタリング
データサイエンス概論第一=2-2 クラスタリングデータサイエンス概論第一=2-2 クラスタリング
データサイエンス概論第一=2-2 クラスタリングSeiichi Uchida
 

Similar to データサイエンス概論第一 5 時系列データの解析 (13)

順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング
 
コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析
 
データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
 
2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演
2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演
2014年5月21日「パーティクルフィルタの癖から知るロボットへの確率的手法の正しい適用方法」---第58回システム制御情報学会研究発表講演会チュートリアル講演
 
反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するか反応時間データをどう分析し図示するか
反応時間データをどう分析し図示するか
 
自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立
自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立
自動車システムの安全性保証へのソフトウェア科学的アプローチ――論理的アカウンタビリティと適用コスト軽減の両立
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率
2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率
2014 02 feb-18-tue-hri-jp-高橋達二-認知バイアスと双条件付確率
 
Casual datascience vol3
Casual datascience vol3Casual datascience vol3
Casual datascience vol3
 
Yokozuna 日本語検索機能を評価しました
Yokozuna 日本語検索機能を評価しましたYokozuna 日本語検索機能を評価しました
Yokozuna 日本語検索機能を評価しました
 
データサイエンス概論第一=1-1 データとは
データサイエンス概論第一=1-1 データとはデータサイエンス概論第一=1-1 データとは
データサイエンス概論第一=1-1 データとは
 
データサイエンス概論第一=2-2 クラスタリング
データサイエンス概論第一=2-2 クラスタリングデータサイエンス概論第一=2-2 クラスタリング
データサイエンス概論第一=2-2 クラスタリング
 

More from Seiichi Uchida

1 データとデータ分析
1 データとデータ分析1 データとデータ分析
1 データとデータ分析Seiichi Uchida
 
13 分類とパターン認識
13 分類とパターン認識13 分類とパターン認識
13 分類とパターン認識Seiichi Uchida
 
12 非構造化データ解析
12 非構造化データ解析12 非構造化データ解析
12 非構造化データ解析Seiichi Uchida
 
0 データサイエンス概論まえがき
0 データサイエンス概論まえがき0 データサイエンス概論まえがき
0 データサイエンス概論まえがきSeiichi Uchida
 
14 データ収集とバイアス
14 データ収集とバイアス14 データ収集とバイアス
14 データ収集とバイアスSeiichi Uchida
 
10 確率と確率分布
10 確率と確率分布10 確率と確率分布
10 確率と確率分布Seiichi Uchida
 
8 予測と回帰分析
8 予測と回帰分析8 予測と回帰分析
8 予測と回帰分析Seiichi Uchida
 
6 線形代数に基づくデータ解析の基礎
6 線形代数に基づくデータ解析の基礎6 線形代数に基づくデータ解析の基礎
6 線形代数に基づくデータ解析の基礎Seiichi Uchida
 
5 クラスタリングと異常検出
5 クラスタリングと異常検出5 クラスタリングと異常検出
5 クラスタリングと異常検出Seiichi Uchida
 
3 平均・分散・相関
3 平均・分散・相関3 平均・分散・相関
3 平均・分散・相関Seiichi Uchida
 
2 データのベクトル表現と集合
2 データのベクトル表現と集合2 データのベクトル表現と集合
2 データのベクトル表現と集合Seiichi Uchida
 
「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから
「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから
「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれからSeiichi Uchida
 
Machine learning for document analysis and understanding
Machine learning for document analysis and understandingMachine learning for document analysis and understanding
Machine learning for document analysis and understandingSeiichi Uchida
 
データサイエンス概論第一=7 画像処理
データサイエンス概論第一=7 画像処理データサイエンス概論第一=7 画像処理
データサイエンス概論第一=7 画像処理Seiichi Uchida
 
An opening talk at ICDAR2017 Future Workshop - Beyond 100%
An opening talk at ICDAR2017 Future Workshop - Beyond 100%An opening talk at ICDAR2017 Future Workshop - Beyond 100%
An opening talk at ICDAR2017 Future Workshop - Beyond 100%Seiichi Uchida
 
データサイエンス概論第一=4-2 確率と確率分布
データサイエンス概論第一=4-2 確率と確率分布データサイエンス概論第一=4-2 確率と確率分布
データサイエンス概論第一=4-2 確率と確率分布Seiichi Uchida
 
データサイエンス概論第一=4-1 相関・頻度・ヒストグラム
データサイエンス概論第一=4-1 相関・頻度・ヒストグラムデータサイエンス概論第一=4-1 相関・頻度・ヒストグラム
データサイエンス概論第一=4-1 相関・頻度・ヒストグラムSeiichi Uchida
 

More from Seiichi Uchida (20)

1 データとデータ分析
1 データとデータ分析1 データとデータ分析
1 データとデータ分析
 
9 可視化
9 可視化9 可視化
9 可視化
 
13 分類とパターン認識
13 分類とパターン認識13 分類とパターン認識
13 分類とパターン認識
 
12 非構造化データ解析
12 非構造化データ解析12 非構造化データ解析
12 非構造化データ解析
 
0 データサイエンス概論まえがき
0 データサイエンス概論まえがき0 データサイエンス概論まえがき
0 データサイエンス概論まえがき
 
15 人工知能入門
15 人工知能入門15 人工知能入門
15 人工知能入門
 
14 データ収集とバイアス
14 データ収集とバイアス14 データ収集とバイアス
14 データ収集とバイアス
 
10 確率と確率分布
10 確率と確率分布10 確率と確率分布
10 確率と確率分布
 
8 予測と回帰分析
8 予測と回帰分析8 予測と回帰分析
8 予測と回帰分析
 
7 主成分分析
7 主成分分析7 主成分分析
7 主成分分析
 
6 線形代数に基づくデータ解析の基礎
6 線形代数に基づくデータ解析の基礎6 線形代数に基づくデータ解析の基礎
6 線形代数に基づくデータ解析の基礎
 
5 クラスタリングと異常検出
5 クラスタリングと異常検出5 クラスタリングと異常検出
5 クラスタリングと異常検出
 
3 平均・分散・相関
3 平均・分散・相関3 平均・分散・相関
3 平均・分散・相関
 
2 データのベクトル表現と集合
2 データのベクトル表現と集合2 データのベクトル表現と集合
2 データのベクトル表現と集合
 
「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから
「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから
「あなたがいま読んでいるものは文字です」~画像情報学から見た文字研究のこれから
 
Machine learning for document analysis and understanding
Machine learning for document analysis and understandingMachine learning for document analysis and understanding
Machine learning for document analysis and understanding
 
データサイエンス概論第一=7 画像処理
データサイエンス概論第一=7 画像処理データサイエンス概論第一=7 画像処理
データサイエンス概論第一=7 画像処理
 
An opening talk at ICDAR2017 Future Workshop - Beyond 100%
An opening talk at ICDAR2017 Future Workshop - Beyond 100%An opening talk at ICDAR2017 Future Workshop - Beyond 100%
An opening talk at ICDAR2017 Future Workshop - Beyond 100%
 
データサイエンス概論第一=4-2 確率と確率分布
データサイエンス概論第一=4-2 確率と確率分布データサイエンス概論第一=4-2 確率と確率分布
データサイエンス概論第一=4-2 確率と確率分布
 
データサイエンス概論第一=4-1 相関・頻度・ヒストグラム
データサイエンス概論第一=4-1 相関・頻度・ヒストグラムデータサイエンス概論第一=4-1 相関・頻度・ヒストグラム
データサイエンス概論第一=4-1 相関・頻度・ヒストグラム
 

データサイエンス概論第一 5 時系列データの解析