Ranking data, i.e., ordered list of items, naturally appears in a wide variety of situation; understanding how to adapt a specific dataset and to design the best approach to solve a ranking problem in a real-world scenario is thus crucial.This talk aims to illustrate how to set up and build a Learning to Rank (LTR) project starting from the available data, in our case a Spotify Dataset (available on Kaggle) on the Worldwide Daily Song Ranking, and ending with the implementation of a ranking model. A step by step (phased) approach to cope with this task using open source libraries will be presented.We will examine in depth the most important part of the pipeline that is the data preprocessing and in particular how to model and manipulate the features in order to create the proper input dataset, tailored to the machine learning algorithm requirements.