Unikernels have been demonstrated to deliver excellent performance in terms of throughput and latency, while providing high isolation. However they have also been shown to underperform in some types of workloads when compared to a generic OS like Linux. In this presentation, we demonstrate that certain types of workloads - web servers, microservices, and other stateless and/or serverless apps - can greatly benefit from OSv optimized networking stack and other features. We describe number of experiments where OSv outperforms Linux guest: most notably we note 1.6 throughput (req/s) and 0.6 latency improvement (at p99 percentile) when running nginx and 1.7 throughput (req/s) and 0.6 latency improvement (at p99 percentile) when running simple microservice implemented in Golang.
We also show that OSv' small kernel, low boot time and memory consumption allow for very high density when running server-less workloads. The experiment described in this presentation shows we can boot 1,800 OSv microVMs per second on AWS c5n.metal machine with 72 CPUs (25 boots/sec on single CPU) with guest boot time recorded as low as 8.98ms at p50 and 31.49ms at p99 percentile respectively.
Lastly we also demonstrate how to automate the build process of the OSv kernel tailored exactly to the specific app and/or VMM so that only the code and symbols needed are part of the kernel and nothing more. OSv is an open source project and can be found at https://github.com/cloudius-systems/osv.