SlideShare a Scribd company logo

ILRMA 20170227 danwakai

独立低ランク行列分析

1 of 73
Download to read offline
独立性に基づくブラインド音源分離の発展と
独立低ランク行列分析
History of independence-based blind source separation
and independent low-rank matrix analysis
東京大学大学院
情報理工学系研究科 システム情報学専攻
第一研究室 特任助教
北村大地(Daichi Kitamura)
東京大学
概要
• 研究の背景
– 音源分離問題とその用途
• ブラインド音源分離と独立成分分析
– 前提条件,問題解決に利用可能な手掛かり
– 周波数領域への適用,耐残響性の向上
• 音楽信号の効率的なモデリング
– 非負値行列因子分解による低ランク近似
– 多次元観測音響信号への拡張
• 独立低ランク行列分析によるブラインド音源分離
– 独立低ランク行列分析
– 多チャネル非負値行列因子分解との関連性
• まとめとさらなる発展
– より高精度なブラインド音源分離を目指して 2
独立成分分析
に由来する音源分離法
の発展
(1994年~2012年)
非負値行列因子分解
に由来する音響信号の
表現方法の発展
(1999年~2013年)
概要
• 研究の背景
– 音源分離問題とその用途
• ブラインド音源分離と独立成分分析
– 前提条件,問題解決に利用可能な手掛かり
– 周波数領域への適用,耐残響性の向上
• 音楽信号の効率的なモデリング
– 非負値行列因子分解による低ランク近似
– 多次元観測音響信号への拡張
• 独立低ランク行列分析によるブラインド音源分離
– 独立低ランク行列分析
– 多チャネル非負値行列因子分解との関連性
• まとめとさらなる発展
– より高精度なブラインド音源分離を目指して 3
独立成分分析
に由来する音源分離法
の発展
(1994年~2007年)
非負値行列因子分解
に由来する音響信号の
表現方法の発展
(1999年~2013年)
• 音源分離(audio source separation)
– 複数の音源が混合された信号を音源毎に分離する信号処理
– 音声認識,雑音抑圧,補聴器,会議アーカイブ etc.
– ほぼ全ての音響システムのフロントエンドに応用可能
• 観測信号から有意な因子を抽出する技術
– 知能情報学の一大トピック
• 音楽信号の音源分離(music source separation)
– ユーザによる既存音楽の再編集,自動採譜技術,
楽器演奏における教育支援,超臨場感音場再現の制御 等
研究の背景:音源分離問題
4
音楽CD
音源分離
実演奏の録音
研究の背景:音源分離問題の種類
• 混合される音源数と録音時のマイク数の関係
– 優決定条件(音源数 マイク数)の音源分離
– 劣決定条件(音源数 マイク数)の音源分離
• 「事前情報」の有無
– 音色の事前学習,楽譜やユーザアノテーション,音源やマイク
の空間的な位置情報等
– 事前情報を用いない手法:ブラインド音源分離 5
音源信号 観測信号 分離信号
混合系 分離系
マイクロホンアレイ
音楽CD
L-ch
R-ch
ステレオ信号(2-ch) モノラル録音
1-ch
モノラル信号(1-ch)
• 基礎となる数理理論の登場と発展
研究の背景:歴史的発展
6
1994
1998
2006
2013
2009
パーミュテーション
問題解決法の検討
1999
独立成分分析(ICA)
非負値行列因子分解(NMF)
周波数領域ICA(FDICA)
板倉斎藤擬距離NMF(ISNMF)
独立ベクトル分析(IVA)
多チャネルNMF
2016 独立低ランク行列分析(ILRMA)
2012 時変複素ガウスIVA
年代
※代表的な手法のみを表記
NMFの様々な問題への適用
生成モデル的解釈
各種拡張

Recommended

音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)音源分離における音響モデリング(Acoustic modeling in audio source separation)
音源分離における音響モデリング(Acoustic modeling in audio source separation)Daichi Kitamura
 
独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...
独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...
独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...Daichi Kitamura
 
非負値行列因子分解に基づくブラインド及び教師あり音楽音源分離の効果的最適化法
非負値行列因子分解に基づくブラインド及び教師あり音楽音源分離の効果的最適化法非負値行列因子分解に基づくブラインド及び教師あり音楽音源分離の効果的最適化法
非負値行列因子分解に基づくブラインド及び教師あり音楽音源分離の効果的最適化法Daichi Kitamura
 
独立低ランク行列分析に基づく音源分離とその発展
独立低ランク行列分析に基づく音源分離とその発展独立低ランク行列分析に基づく音源分離とその発展
独立低ランク行列分析に基づく音源分離とその発展Kitamura Laboratory
 
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3Naoya Takahashi
 
独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...
独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...
独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...Daichi Kitamura
 
独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...
独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...
独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...Daichi Kitamura
 

More Related Content

What's hot

ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...
ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...
ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...Daichi Kitamura
 
統計的独立性と低ランク行列分解理論に基づく ブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
統計的独立性と低ランク行列分解理論に基づくブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...統計的独立性と低ランク行列分解理論に基づくブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
統計的独立性と低ランク行列分解理論に基づく ブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...Daichi Kitamura
 
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法Daichi Kitamura
 
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...Daichi Kitamura
 
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~Yui Sudo
 
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...Daichi Kitamura
 
論文紹介 Unsupervised training of neural mask-based beamforming
論文紹介 Unsupervised training of neural  mask-based beamforming論文紹介 Unsupervised training of neural  mask-based beamforming
論文紹介 Unsupervised training of neural mask-based beamformingShinnosuke Takamichi
 
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)Daichi Kitamura
 
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...Daichi Kitamura
 
実環境音響信号処理における収音技術
実環境音響信号処理における収音技術実環境音響信号処理における収音技術
実環境音響信号処理における収音技術Yuma Koizumi
 
環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類Keisuke Imoto
 
Music signal separation using supervised nonnegative matrix factorization wit...
Music signal separation using supervised nonnegative matrix factorization wit...Music signal separation using supervised nonnegative matrix factorization wit...
Music signal separation using supervised nonnegative matrix factorization wit...Daichi Kitamura
 
スペクトログラム無矛盾性を用いた 独立低ランク行列分析の実験的評価
スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価
スペクトログラム無矛盾性を用いた 独立低ランク行列分析の実験的評価Daichi Kitamura
 
深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術NU_I_TODALAB
 
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...Daichi Kitamura
 
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)Daichi Kitamura
 
直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離
直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離
直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離奈良先端大 情報科学研究科
 

What's hot (20)

ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...
ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...
ランク1空間近似を用いたBSSにおける音源及び空間モデルの考察 Study on Source and Spatial Models for BSS wi...
 
統計的独立性と低ランク行列分解理論に基づく ブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
統計的独立性と低ランク行列分解理論に基づくブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...統計的独立性と低ランク行列分解理論に基づくブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
統計的独立性と低ランク行列分解理論に基づく ブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
 
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法
 
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
 
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
深層学習を用いた音源定位、音源分離、クラス分類の統合~環境音セグメンテーション手法の紹介~
 
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
 
Ea2015 7for ss
Ea2015 7for ssEa2015 7for ss
Ea2015 7for ss
 
Kameoka2017 ieice03
Kameoka2017 ieice03Kameoka2017 ieice03
Kameoka2017 ieice03
 
論文紹介 Unsupervised training of neural mask-based beamforming
論文紹介 Unsupervised training of neural  mask-based beamforming論文紹介 Unsupervised training of neural  mask-based beamforming
論文紹介 Unsupervised training of neural mask-based beamforming
 
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
 
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
 
Slp201702
Slp201702Slp201702
Slp201702
 
実環境音響信号処理における収音技術
実環境音響信号処理における収音技術実環境音響信号処理における収音技術
実環境音響信号処理における収音技術
 
環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類環境音の特徴を活用した音響イベント検出・シーン分類
環境音の特徴を活用した音響イベント検出・シーン分類
 
Music signal separation using supervised nonnegative matrix factorization wit...
Music signal separation using supervised nonnegative matrix factorization wit...Music signal separation using supervised nonnegative matrix factorization wit...
Music signal separation using supervised nonnegative matrix factorization wit...
 
スペクトログラム無矛盾性を用いた 独立低ランク行列分析の実験的評価
スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価
スペクトログラム無矛盾性を用いた 独立低ランク行列分析の実験的評価
 
深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術
 
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
 
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
 
直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離
直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離
直交化及び距離最大化則条件を用いた教師あり非負値行列因子分解による音楽信号分離
 

Viewers also liked

Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討Shinnosuke Takamichi
 
Koyama ASA ASJ joint meeting 2016
Koyama ASA ASJ joint meeting 2016Koyama ASA ASJ joint meeting 2016
Koyama ASA ASJ joint meeting 2016SaruwatariLabUTokyo
 
HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価
HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価
HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価Shinnosuke Takamichi
 
数値解析と物理学
数値解析と物理学数値解析と物理学
数値解析と物理学すずしめ
 

Viewers also liked (11)

Ica2016 312 saruwatari
Ica2016 312 saruwatariIca2016 312 saruwatari
Ica2016 312 saruwatari
 
Hybrid NMF APSIPA2014 invited
Hybrid NMF APSIPA2014 invitedHybrid NMF APSIPA2014 invited
Hybrid NMF APSIPA2014 invited
 
Dsp2015for ss
Dsp2015for ssDsp2015for ss
Dsp2015for ss
 
Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討
 
Apsipa2016for ss
Apsipa2016for ssApsipa2016for ss
Apsipa2016for ss
 
Asj2017 3 bileveloptnmf
Asj2017 3 bileveloptnmfAsj2017 3 bileveloptnmf
Asj2017 3 bileveloptnmf
 
Koyama ASA ASJ joint meeting 2016
Koyama ASA ASJ joint meeting 2016Koyama ASA ASJ joint meeting 2016
Koyama ASA ASJ joint meeting 2016
 
HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価
HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価
HMMに基づく日本人英語音声合成における中学生徒の英語音声を用いた評価
 
Koyama AES Conference SFC 2016
Koyama AES Conference SFC 2016Koyama AES Conference SFC 2016
Koyama AES Conference SFC 2016
 
Discriminative SNMF EA201603
Discriminative SNMF EA201603Discriminative SNMF EA201603
Discriminative SNMF EA201603
 
数値解析と物理学
数値解析と物理学数値解析と物理学
数値解析と物理学
 

Similar to ILRMA 20170227 danwakai

局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価
局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価
局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価Kitamura Laboratory
 
Study on optimal divergence for superresolution-based supervised nonnegative ...
Study on optimal divergence for superresolution-based supervised nonnegative ...Study on optimal divergence for superresolution-based supervised nonnegative ...
Study on optimal divergence for superresolution-based supervised nonnegative ...Daichi Kitamura
 
非負値行列分解の確率的生成モデルと 多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
非負値行列分解の確率的生成モデルと多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...非負値行列分解の確率的生成モデルと多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
非負値行列分解の確率的生成モデルと 多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...Daichi Kitamura
 
過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...
過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...
過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...Daichi Kitamura
 
Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...
Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...
Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...Daichi Kitamura
 
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離Kitamura Laboratory
 
Kameoka2012 talk07 1
Kameoka2012 talk07 1Kameoka2012 talk07 1
Kameoka2012 talk07 1kame_hirokazu
 
音情報処理における特徴表現
音情報処理における特徴表現音情報処理における特徴表現
音情報処理における特徴表現NU_I_TODALAB
 
Divergence optimization based on trade-off between separation and extrapolati...
Divergence optimization based on trade-off between separation and extrapolati...Divergence optimization based on trade-off between separation and extrapolati...
Divergence optimization based on trade-off between separation and extrapolati...奈良先端大 情報科学研究科
 

Similar to ILRMA 20170227 danwakai (10)

局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価
局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価
局所時間周波数構造に基づく深層パーミュテーション解決法の実験的評価
 
Study on optimal divergence for superresolution-based supervised nonnegative ...
Study on optimal divergence for superresolution-based supervised nonnegative ...Study on optimal divergence for superresolution-based supervised nonnegative ...
Study on optimal divergence for superresolution-based supervised nonnegative ...
 
非負値行列分解の確率的生成モデルと 多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
非負値行列分解の確率的生成モデルと多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...非負値行列分解の確率的生成モデルと多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
非負値行列分解の確率的生成モデルと 多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
 
過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...
過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...
過決定条件BSSにおけるランク1空間制約の緩和 Relaxation of rank-1 spatial model in overdetermined...
 
Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...
Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...
Efficient multichannel nonnegative matrix factorization with rank-1 spatial m...
 
最終講義
最終講義最終講義
最終講義
 
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
 
Kameoka2012 talk07 1
Kameoka2012 talk07 1Kameoka2012 talk07 1
Kameoka2012 talk07 1
 
音情報処理における特徴表現
音情報処理における特徴表現音情報処理における特徴表現
音情報処理における特徴表現
 
Divergence optimization based on trade-off between separation and extrapolati...
Divergence optimization based on trade-off between separation and extrapolati...Divergence optimization based on trade-off between separation and extrapolati...
Divergence optimization based on trade-off between separation and extrapolati...
 

ILRMA 20170227 danwakai

Editor's Notes

  1. まず,混ざる前の音源信号は非ガウスな分布から生成されていると仮定します.この仮定は多くの場合に有効で,事実音声や楽器音などはガウス分布よりも裾の重い,とんがった優ガウスな分布に従います. このような音源信号が混ざった観測信号は,中心極限定理により,ガウス分布に近い信号になります. FDICAでは分離後の信号の時間周波数領域の周波数毎の時系列信号に対して,スカラーの生成モデルを考えています.はじめは分離フィルタが正しくないため,推定信号はまだ混ざった状態で,その信号の分布はガウス分布に近くなります.そこでICAは,この推定信号の分布形状が,あらかじめ仮定しておいた非ガウスな分布になるように分離フィルタを更新していきます.ここで,仮定しておく非ガウスな音源分布を「音源モデル」と呼び,これらは音源間で互いに独立と仮定しています. このように,ガウスな信号から遠ざけ,音源モデルに従う信号を推定することで,混ざる前の音源が推定できる,というのがICAの原理で,それを周波数成分ごとに動かしているのがFDICAです. IVAでも原理は同じですが,FDICAで周波数毎に独立に定義されていたスカラー確率変数をまとめて多変量なベクトルの時系列信号とし,この図のように球対称な多変量非ガウス分布に近づけます. こちらも初めは多変量ガウス分布だったものが,更新によってそれぞれの信号が非ガウスな音源モデルへと近づき,分離されるという仕組みです. IVAでは球対称な多変量分布を仮定することで,周波数間の依存関係も考慮されており,FDICAよりも高精度な分離が可能です. どちらも,音声の分離などではラプラス分布,あるいは多変量ラプラス分布などが音源モデルとして利用されています.
  2. 提案手法ILRMAの対数尤度関数はこのように得られます.ここで(クリック)青丸で囲った空間分離フィルタWと,赤丸で囲ったNMF音源モデルTVが求めるべき変数になります.(クリック) さらにこの式は,(クリック)前半が従来のIVAのコスト関数と等価であり,(クリック)後半が従来のNMFのコスト関数と等価です.(クリック) したがって,IVAとNMFの反復更新式を交互に反復することで全変数を容易に推定できます. さらに,音源毎に適切なランク数を潜在変数で適応的に決定することも可能です. これは,冒頭で示した通り,音楽信号といえどもボーカルはあまり低ランクにならず,ドラム信号は低ランク,といったことが起こりえますので,音源毎の適切なランクが変わります. そのような状況に対して尤度最大化の基準で自動的に基底を割り振るのがこの潜在変数の役割です.
  3. ILRMAの反復更新式はこのように導出できます. 空間分離フィルタの更新と音源モデルの更新を交互に行うことで,全変数が最適化されます. これらの反復計算で尤度が単調増加することが保証されているので,初期値近傍の局所解への収束が保証されています.
  4. 音楽信号の分離実験を行いました.こちらは実験条件です.二つの音楽信号をこのような配置で鳴らし,2チャンネルのマイクで録音しました.このときの残響時間は300msです. 評価値はSDRという値を用いています.これは音質と分離度合いを含む総合的な性能を示す尺度です.