Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Mecanica

6,580 views

Published on

Published in: Travel, Business
  • Be the first to comment

Mecanica

  1. 1. MECANICA<br />
  2. 2.
  3. 3. INTRODUCCION<br />La mecánica es una ciencia perteneciente a la física, ya que los fenómenos que estudia son físicos, por ello está relacionada con las matemáticas. Sin embargo, también puede relacionarse con la ingeniería, en un modo menos riguroso. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como éstas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.<br />
  4. 4. OBJETIVOS<br /><ul><li>Adquirir los conceptos fundamentales de la estática, cinemática y dinámica de un solido rígido
  5. 5. Desarrollar una metodología de trabajo basada en conceptos teóricos generales para el planteamiento y resolución de problemas
  6. 6. Comprender el movimiento de los cuerpos, por la acción de sus fuerzas</li></li></ul><li>DEFINICION<br />La mecánica es la rama de la física que describe el movimiento de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas. El conjunto de disciplinas que abarca la mecánica convencional es muy amplio y es posible agruparlas en cuatro bloques principales:<br /><ul><li>MECANICA CLASICA
  7. 7. MECANICA CUANTICA
  8. 8. MECANICA RELATIVISTA
  9. 9. TEORIA CUANTICA DE CAMPOS</li></li></ul><li>MECANICA CLASICA<br />La mecánica clásica está formada por áreas de estudio que van desde la mecánica del sólido rígido y otros sistemas mecánicos con un número finito de grados de libertad, como la mecánica de medios continuos (sistemas con infinitos grados de libertad). Existen dos formulaciones diferentes, que difieren en el grado de formalización para los sistemas con un número finito de grados de libertad:<br />-Mecánica newtoniana: Dio origen a las demás disciplinas y se divide en varias de ellas: la cinemática, estudio del movimiento en sí, sin atender a las causas que lo originan; la estática, que estudia el equilibrio entre fuerzas y la dinámica que es el estudio del movimiento atendiendo a sus orígenes, las fuerzas. <br /> -Mecánica analítica: una formulación matemática muy potente de la mecánica newtoniana basada en el principio de Hamilton, que emplea el formalismo de variedades diferenciables, en concreto el espacio de configuración y el espacio fásico. <br />
  10. 10. MECANICA CUANTICA<br />La mecánica cuántica trata con sistemas mecánicos de pequeña escala o con energía muy pequeñas (y ocasionalmente sistemas macroscópicos que exhiben cuantización de alguna magnitud física). En esos casos los supuestos de la mecánica clásica no son adecuados. En particular el principio de determinación por el cual la evolución de un sistema es determinista, ya que las ecuaciones para la función de onda de la mecánica cuántica no permiten predecir el estado del sistema después de una medida concreta, asunto conocido como problema de la medida.<br />En mecánica cuántica el enfoque probabilístico, lleva por ejemplo en el enfoque más común renunciar al concepto de trayectoria de una partícula. Peor aún el concepto la interpretación de Copenhague renuncia por completo a la idea de que las partículas ocupen un lugar concreto y determinado en el espacio-tiempo. La estructura interna de algunos sistemas físicos de interés como los átomos o las moléculas sólo pueden ser explicados mediante un tratamiento cuántico, ya que la mecánica clásica hace predicciones sobre dichos sistemas que contradicen la evidencia física.<br />
  11. 11. MECANICA RELATIVISTA<br />La Mecánica relativista o Teoría de la Relatividad comprende:<br />-La Teoría de la Relatividad Especial: que describe adecuadamente el comportamiento clásico de los cuerpos que se mueven a grandes velocidades en un espacio-tiempo plano (no-curvado). <br />-La Teoría general de la relatividad: que generaliza la anterior describiendo el movimiento en espacios-tiempo curvados, además de englobar una teoría relativista de la gravitación que generaliza la teoría de la gravitación de Newton.<br />Una de las propiedades interesantes de la dinámica relativista es que la fuerza y la aceleración no son en general vectores paralelos en una trayectoria curva, ya que la relación entre la aceleración y la fuerza tangenciales es diferente que la que existe entre la aceleración y fuerza normales. Tampoco la razón entre el módulo de la fuerza y el módulo de la aceleración es constante, ya que en ella aparece el inverso del factor de Lorentz, que es decreciente con la velocidad llegando a ser nulo a velocidades cercanas a la velocidad de la luz.<br />
  12. 12. TEORIA CUANTICA DE CAMPOS<br />La teoría cuántica de campos es un marco teórico que aplica los principios de la mecánica cuántica a los sistemas clásicos de campos continuos, como por ejemplo el campo electromagnético. Mediante este formalismo puede describirse la evolución e interacciones de un sistema compuesto de partículas cuánticas cuyo número no es constante, esto es, que pueden crearse o destruirse.<br />Su principal aplicación es a la física de altas energías, donde se combina con los postulados de la relatividad especial. En ese régimen es capaz de acomodar todas las especies de partículas subatómicas y sus interacciones, así como de realizar predicciones muy genéricas, como la relación entre spin y estadística, la simetría CPT, la existencia de antimateria, etc. Además es una herramienta importante en el contexto de la física de la materia condensada, donde se utiliza para explicar fenómenos como la superconductividad.<br />

×