Successfully reported this slideshow.
Your SlideShare is downloading. ×

Latent Semantic Analysis of Wikipedia with Spark

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 46 Ad

More Related Content

Slideshows for you (20)

Viewers also liked (20)

Advertisement

Similar to Latent Semantic Analysis of Wikipedia with Spark (20)

Recently uploaded (20)

Advertisement

Latent Semantic Analysis of Wikipedia with Spark

  1. 1. 1© Cloudera, Inc. All rights reserved. LSA-ing Wikipedia with Spark Sandy Ryza | Senior Data Scientist
  2. 2. 2© Cloudera, Inc. All rights reserved. Me • Data scientist at Cloudera • Recently lead Cloudera’s Apache Spark development • Author of Advanced Analytics with Spark
  3. 3. 3© Cloudera, Inc. All rights reserved. LSA-ing Wikipedia with Spark Sandy Ryza | Senior Data Scientist
  4. 4. 4© Cloudera, Inc. All rights reserved. Latent Semantic Analysis • Fancy name for applying a matrix decomposition (SVD) to text data
  5. 5. 5© Cloudera, Inc. All rights reserved.
  6. 6. 6© Cloudera, Inc. All rights reserved.
  7. 7. 7© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  8. 8. 8© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  9. 9. 9© Cloudera, Inc. All rights reserved. Wikipedia Content Data Set • http://dumps.wikimedia.org/enwiki/latest/ • XML-formatted • 46 GB uncompressed
  10. 10. 10© Cloudera, Inc. All rights reserved. <page> <title>Anarchism</title> <ns>0</ns> <id>12</id> <revision> <id>584215651</id> <parentid>584213644</parentid> <timestamp>2013-12-02T15:14:01Z</timestamp> <contributor> <username>AnomieBOT</username> <id>7611264</id> </contributor> <comment>Rescuing orphaned refs (&quot;autogenerated1&quot; from rev 584155010; &quot;bbc&quot; from rev 584155010)</comment> <text xml:space="preserve">{{Redirect|Anarchist|the fictional character| Anarchist (comics)}} {{Redirect|Anarchists}} {{pp-move-indef}} {{Anarchism sidebar}} '''Anarchism''' is a [[political philosophy]] that advocates [[stateless society| stateless societies]] often defined as [[self-governance|self-governed]] voluntary institutions,&lt;ref&gt;&quot;ANARCHISM, a social philosophy that rejects authoritarian government and maintains that voluntary institutions are best suited to express man's natural social tendencies.&quot; George Woodcock. &quot;Anarchism&quot; at The Encyclopedia of Philosophy&lt;/ref&gt;&lt;ref&gt; &quot;In a society developed on these lines, the voluntary associations which already now begin to cover all the fields of human activity would take a still greater extension so as to substitute ...
  11. 11. 11© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  12. 12. 12© Cloudera, Inc. All rights reserved. import org.apache.mahout.text.wikipedia.XmlInputFormat import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io._ val path = "hdfs:///user/ds/wikidump.xml" val conf = new Configuration() conf.set(XmlInputFormat.START_TAG_KEY, "<page>") conf.set(XmlInputFormat.END_TAG_KEY, "</page>") val kvs = sc.newAPIHadoopFile(path, classOf[XmlInputFormat], classOf[LongWritable], classOf[Text], conf) val rawXmls = kvs.map(p => p._2.toString)
  13. 13. 13© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  14. 14. 14© Cloudera, Inc. All rights reserved. Lemmatization “the boy’s cars are different colors” “the boy car be different color”
  15. 15. 15© Cloudera, Inc. All rights reserved. CoreNLP def createNLPPipeline(): StanfordCoreNLP = { val props = new Properties() props.put("annotators", "tokenize, ssplit, pos, lemma") new StanfordCoreNLP(props) }
  16. 16. 16© Cloudera, Inc. All rights reserved. Stop Words “the boy car be different color” “boy car different color”
  17. 17. 17© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  18. 18. 18© Cloudera, Inc. All rights reserved. Tail Monkey Algorithm Scala Document 1 1.5 1.8 Document 2 2.0 4.3 Document 3 1.4 6.7 Document 4 1.6 Document 5 1.2 Term-Document Matrix
  19. 19. 19© Cloudera, Inc. All rights reserved. tf-idf • (Term Frequency) * (Inverse Document Frequency) • tf(document, word) = # times word appears in document • idf(word) = 1 / (# documents that contain word)
  20. 20. 20© Cloudera, Inc. All rights reserved. val rowVectors: RDD[Vector] = ...
  21. 21. 21© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  22. 22. 22© Cloudera, Inc. All rights reserved. Singular Value Decomposition • Factors matrix into the product of three matrices: U, S, and V • m = # documents • n = # terms • U is m x n • S is n x n • V is n x n
  23. 23. 23© Cloudera, Inc. All rights reserved. Low Rank Approximation • Account for synonymy by condensing related terms. • Account for polysemy by placing less weight on terms that have multiple meanings. • Throw out noise. SVD can find the rank-k approximation that has the lowest Frobenius distance from the original matrix.
  24. 24. 24© Cloudera, Inc. All rights reserved. Singular Value Decomposition • Factors matrix into the product of three matrices: U, S, and V • m = # documents • n = # terms • k = # concepts • U is m x n • S is k x k • V is k x n
  25. 25. 25© Cloudera, Inc. All rights reserved. Docs: Terms:U S V
  26. 26. 26© Cloudera, Inc. All rights reserved. Docs: Terms:U S V
  27. 27. 27© Cloudera, Inc. All rights reserved. rowVectors.cache() val mat = new RowMatrix(rowVectors) val k = 1000 val svd = mat.computeSVD(k, computeU=true)
  28. 28. 28© Cloudera, Inc. All rights reserved. Parse Raw Data Clean Term- Document Matrix SVD Interpret Results
  29. 29. 29© Cloudera, Inc. All rights reserved. What are the top “concepts”? I.e. what dimensions in term-space and document-space explain most of the variance of the data?
  30. 30. 30© Cloudera, Inc. All rights reserved. Docs: Terms:U S V
  31. 31. 31© Cloudera, Inc. All rights reserved. U S V
  32. 32. 32© Cloudera, Inc. All rights reserved. U S V
  33. 33. 33© Cloudera, Inc. All rights reserved. def topTermsInConcept(concept: Int, numTerms: Int) : Seq[(String, Double)] = { val v = svd.V.toBreezeMatrix val termWeights = v(::, k).toArray.zipWithIndex val sorted = termWeights.sortBy(-_._1) sorted.take(numTerms) }
  34. 34. 34© Cloudera, Inc. All rights reserved. def topDocsInConcept(concept: Int, numDocs: Int) : Seq[Seq[(String, Double)]] = { val u = svd.U val docWeights = u.rows.map(_.toArray(concept)).zipWithUniqueId() docWeights.top(numDocs) }
  35. 35. 35© Cloudera, Inc. All rights reserved. Concept 1 Terms: department, commune, communes, insee, france, see, also, southwestern, oise, marne, moselle, manche, eure, aisne, isère Docs: Communes in France, Saint-Mard, Meurthe-et-Moselle, Saint-Firmin, Meurthe-et-Moselle, Saint-Clément, Meurthe-et-Moselle, Saint-Sardos, Lot-et-Garonne, Saint-Urcisse, Lot-et-Garonne, Saint-Sernin, Lot-et-Garonne, Saint-Robert, Lot-et-Garonne, Saint-Léon, Lot-et-Garonne, Saint-Astier, Lot-et-Garonne
  36. 36. 36© Cloudera, Inc. All rights reserved. Concept 2 Terms: genus, species, moth, family, lepidoptera, beetle, bulbophyllum, snail, database, natural, find, geometridae, reference, museum, noctuidae Docs: Chelonia (genus), Palea (genus), Argiope (genus), Sphingini, Cribrilinidae, Tahla (genus), Gigartinales, Parapodia (genus), Alpina (moth), Arycanda (moth)
  37. 37. 37© Cloudera, Inc. All rights reserved. Querying • Given a set of terms, find the closest documents in the latent space
  38. 38. 38© Cloudera, Inc. All rights reserved. Reconstructed Matrix (U * S * V) Doc Term
  39. 39. 39© Cloudera, Inc. All rights reserved. def topTermsForTerm( normalizedVS : BDenseMatrix[Double], termId: Int): Seq[(Double, Int)] = { val rowVec = new BDenseVector[Double](row(normalizedVS, termId).toArray) val termScores = (normalizedVS * rowVec).toArray.zipWithIndex termScores.sortBy(- _._1).take(10) } val VS = multiplyByDiagonalMatrix(svd.V, svd.s) val normalizedVS = rowsNormalized(VS) topTermsForTerm(normalizedVS, id, termIds)
  40. 40. 40© Cloudera, Inc. All rights reserved. printRelevantTerms("radiohead") radiohead 0.9999999999999993 lyrically 0.8837403315233519 catchy 0.8780717902060333 riff 0.861326571452104 lyricsthe 0.8460798060853993 lyric 0.8434937575368959 upbeat 0.8410212279939793 Term Similarity
  41. 41. 41© Cloudera, Inc. All rights reserved. printRelevantTerms("algorithm") algorithm 1.000000000000002 heuristic 0.8773199836391916 compute 0.8561015487853708 constraint 0.8370707630657652 optimization 0.8331940333186296 complexity 0.823738607119692 algorithmic 0.8227315888559854 Term Similarity
  42. 42. 42© Cloudera, Inc. All rights reserved. (algorithm,1.000000000000002), (heuristic,0.8773199836391916), (compute,0.8561015487853708), (constraint,0.8370707630657652), (optimization,0.8331940333186296), (complexity,0.823738607119692), (algorithmic,0.8227315888559854), (iterative,0.822364922633442), (recursive,0.8176921180556759), (minimization,0.8160188481409465)
  43. 43. 43© Cloudera, Inc. All rights reserved. def topDocsForTerm( US: RowMatrix, V: Matrix, termId: Int) : Seq[(Double, Long)] = { val rowArr = row(V, termId).toArray val rowVec = Matrices.dense(termRowArr.length, 1, termRowArr) val docScores = US.multiply(termRowVec) val allDocWeights = docScores.rows.map( _.toArray(0)). zipWithUniqueId() allDocWeights.top( 10) }
  44. 44. 44© Cloudera, Inc. All rights reserved. printRelevantDocs("fir") Silver tree 0.006292909647173194 See the forest for the trees 0.004785047583508223 Eucalyptus tree 0.004592837783089319 Sequoia tree 0.004497446632469554 Willow tree 0.004429936059594164 Coniferous tree 0.004381572286629475 Tulip Tree 0.004374705020233878 Document Similarity
  45. 45. 45© Cloudera, Inc. All rights reserved. • https://github.com/sryza/aas/tree/master/ch06-lsa • https://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html • More detail?
  46. 46. 46© Cloudera, Inc. All rights reserved. Thank you @sandysifting

×