Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Brain computer interface


Published on

a ppt for my mtech seminar

Brain computer interface

  1. 1. BCI Implementation For Blind Subjects using Signal Processing BY-Sanchita Singha
  2. 2. Contents  What is BCI?  How human brain works  How BCI works  Uses of BCI  Implementation  Constraints  Conclusion 11/23/2013 BCI Implementation 2
  3. 3. What is BCI • BCI-Brain Computer Interface • Direct communication pathway between the brain and an external device • Reads electrical signals from brain 11/23/2013 BCI Implementation 3
  4. 4. How BCI works 11/23/2013 BCI Implementation 4
  5. 5. Types of BCI 11/23/2013 BCI Implementation 5
  6. 6. Practical Use of BCI  People with spinal injuries  Targeted for people with paralysis  People with acquired blindness can get vision 11/23/2013 Jens Naumann, a man with acquired blindness BCI Implementation 6
  7. 7. How virtual eye works 11/23/2013 BCI Implementation 7
  8. 8. Flowchart 11/23/2013 BCI Implementation 8
  9. 9. Signal Acquisition 11/23/2013 BCI Implementation 9
  10. 10. Training 11/23/2013 BCI Implementation 10
  11. 11. Feature Extraction 11/23/2013 BCI Implementation 11
  12. 12. Pre-processing 11/23/2013 BCI Implementation 12
  13. 13. Constraints • EEGs measure tiny voltage potentials. The signal is weak and prone to interference. • Each neuron is constantly sending and receiving signals through a complex web of connections. There are chemical processes involved as well, which EEGs can't pick up on. • The equipment heavy & hence not portable. 11/23/2013 BCI Implementation 13
  14. 14. Conclusion • Enables people to communicate and control appliances with use of brain signals • Open gates for disabled people. • Numerous future applications 11/23/2013 BCI Implementation 14
  15. 15. • • • • • • • • • • • • • • • • • • References [1] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer interface (BCI),” IEEE Trans. Neural Syst. Rehab. Eng., vol. 9, no. 1, pp. 49–58, 2001. [2] G. Pfurtscheller, R. Leeb, C. Keinrath, D. Friedman, C. Neuper, C. Guger, and M. Slater, “Walking from thought,” Brain Res., vol. 1071, no. 1, pp. 145–152, 2006. [3] N.J. Hill, T.N. Lal, M. Schroder, T. Hinterberger, B. Wilhelm, F. Nijboer, U. Mochty, G. Widman, C. Elger, B. Scholkopf, A. Kubler, and N. Birbaumer, “Classifying EEG and ECoG signals without subject training for fast BCI implementation: Comparison of nonparalyzed and completely paralyzed subjects,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 14, pp. 183–186, June 2006. [4] N. Weiskopf, K. Mathiak, S.W. Bock, F. Scharnowski, R. Veit, W. Grodd, R. Goebel, and N. Birbaumer, “Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI),” IEEE Trans. Biomed. Eng., vol. 51, pp. 966–970, June 2004. [5] S.-S. Yoo, T. Fairneny, N.-K. Chen, S.-E. Choo, L.P. Panych, H. Park, S.-Y. Lee, and F.A. Jolesz, “Brain-computer interface using fMRI: Spatial navigation by thoughts,” Neuroreport, vol. 15, no. 10, pp. 1591–1595, 2004. [6] M. A. L. Nicolelis, “Actions from Thoughts,” Nature, vol. 409, pp.403-407, 2001 [7] X. Gao, X. Dignfeng, M. Cheng and S. Gao, “A BCI-based Environmental Controller for the Motion-Disabled,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, pp. 137-140, 2003 [8] J. R. Mill´an, P. W. Ferrez and A. Buttfield, “Non Invasive Brain Machine Interfaces - Final report,” IDIAP Research Institute - ESA, 2005 [9] J. D. Bayliss, “Use of the Evoked Potential P3 Component for Control in a Virtual Environment,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, pp. 113-116, 2003 [10] J. L. Sirvent, J. M. Azor´ın, E. Ia´n˜ez, E., A. U´ beda and E. Ferna´ndez, “P300-based Brain-Computer Interface for Internet Browsing,” IEEE International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS), pp. 615-622, 2010 [11] E. Ia´n˜ez, J. M. Azor´ın, A. U´ beda, J. M. Ferra´ndez and E. Ferna´ndez, “Mental Tasks-Based Brain–Robot Interface,” Robotics and Autonomous Systems, vol. 58(12), pp. 1238-1245, 2010 [12] G. Pfurtscheller and C. Neuper, “Motor Imagery and Direct Brain Computer Communication,” Proceedings of the IEEE, vol. 89, pp. 1123-1134, 2001 [13] F. Lotte, M. Congedo, A. L´ecuyer, F. Lamarche and B. Arnaldi, “A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces,” Journal of Neural Engineering, vol. 4, pp. 1-13, 2007 [14] F. Cincotti et al., “High-resolution EEG Techniques for Brain Computer Interface Applications,” Journal of Neuroscience Methods, vol. 167(1), pp. 31-42, 2008 [15] R. T. Lauer, P. H. Peckham, K. L. Kilgore, andW. J. Heetderks, “Applications of cortical signals to neuroprosthetic control: A critical review,” IEEE Trans. Rehab. Eng., vol. 8, pp. 205–208, June 2000. [16] G. Garcia, T. Ebrahimi, and J.-M. Vesin, “Classification of EEG signals in the ambiguity domain for brain-computer interface applications,” in IEEE Int. Conf. Digit. Sig. Proc., Santorini, Greece, vol. 1, 1-3 July 2002, pp. 301-305. [17] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Trans. Rehab. Eng., vol. 8, pp. 441–446, Dec. 2000. [18] B. Kotchoubey, D. Schneider, H. Schleichert, U. Strehl, C. Uhlmann, V. Blankenhorn, W. Froscher, and N. Birbaumer, “Self-regulation of slow cortical potentials in epilepsy: A retrial with analysis of influencing factors,” Epilepsy Res., vol. 25, no. 3, pp. 269–276, Nov. 1996. 11/23/2013 BCI Implementation 15
  16. 16. ~Thank You~ For your attention 11/23/2013 BCI Implementation 16
  17. 17. Any Queries?? 11/23/2013 BCI Implementation 17