SlideShare a Scribd company logo

Geospatial Synergy: Amplifying Efficiency with FME & Esri ft. Peak Guest Speakers

Dive deep into the world of geospatial data management and transformation in our upcoming webinar focusing on the powerful integration of FME and Esri technologies. This insightful session comprises two compelling segments aimed at enhancing your geospatial workflows, while minimizing operational hurdles. In the first segment, guest speaker Jan Roggisch from Locus unveils how Auckland Council triumphed over the challenges of handling large, frequent data updates on ArcGIS Online using FME. Discover the journey from manual data handling to an automated, streamlined process that reduced server downtime from minutes to seconds: setting a new standard for local government organizations. The second segment, led by James Botterill from 1Spatial, unveils the magic of incorporating ArcPy into your FME workflows. Delve into real-world scenarios where ArcGIS geoprocessing is harmoniously orchestrated within FME using the PythonCaller. Gain insights into raster-vector data conversion, spatial analysis, and a host of practical tips and tricks that empower you to leverage the combined capabilities of FME and Esri for efficient data manipulation and conversion. Join us to explore the remarkable possibilities that open up when FME and Esri technologies converge – enhancing your ability to manage and transform geospatial data with unprecedented efficiency.

1 of 59
Download to read offline
Geospatial Synergy:
Amplifying Efficiency with
FME & Esri
Agenda
1 Introduction
2 Safe & FME
3 Jan, Locus: Optimizing Bulk Data Updates in ArcGIS Online
4 James, 1Spatial: Model build ArcPy - FME
5 Resources & Next Steps
6 Q&A
Agenda
Welcome to Livestorm.
A few ways to engage with us during the webinar:
Audio issues? Click this for 4 simple
troubleshooting steps.
1
Introduction
Explore the remarkable possibilities
that open up when FME and Esri
technologies converge.
And manage your geospatial data with
unprecedented efficiency.
Introduction
One platform, two technologies
FME Form FME Flow
Build and run data workflows Automate data workflows
FME Flow Hosted
Safe Software managed instance
fme.safe.com/platform
FME Enterprise Integration Platform
Safe & FME

Recommended

DSD-INT 2015 - RSS Sentinel Toolbox - J. Manuel Delgado Blasco
DSD-INT 2015 - RSS Sentinel Toolbox - J. Manuel Delgado BlascoDSD-INT 2015 - RSS Sentinel Toolbox - J. Manuel Delgado Blasco
DSD-INT 2015 - RSS Sentinel Toolbox - J. Manuel Delgado BlascoDeltares
 
Efficiently Implementing INSPIRE & Creating INSPIRE Mashups with FME
Efficiently Implementing INSPIRE & Creating INSPIRE Mashups with FMEEfficiently Implementing INSPIRE & Creating INSPIRE Mashups with FME
Efficiently Implementing INSPIRE & Creating INSPIRE Mashups with FMESafe Software
 
FME Around the World
FME Around the WorldFME Around the World
FME Around the WorldSafe Software
 
Overview of the MVAPICH Project and Future Roadmap
Overview of the MVAPICH Project and Future RoadmapOverview of the MVAPICH Project and Future Roadmap
Overview of the MVAPICH Project and Future Roadmapinside-BigData.com
 
MapR 5.2: Getting More Value from the MapR Converged Data Platform
MapR 5.2: Getting More Value from the MapR Converged Data PlatformMapR 5.2: Getting More Value from the MapR Converged Data Platform
MapR 5.2: Getting More Value from the MapR Converged Data PlatformMapR Technologies
 
Development and Applications of Distributed IoT Sensors for Intermittent Conn...
Development and Applications of Distributed IoT Sensors for Intermittent Conn...Development and Applications of Distributed IoT Sensors for Intermittent Conn...
Development and Applications of Distributed IoT Sensors for Intermittent Conn...InfluxData
 

More Related Content

Similar to Geospatial Synergy: Amplifying Efficiency with FME & Esri ft. Peak Guest Speakers

Sparc的未来发展方向
Sparc的未来发展方向Sparc的未来发展方向
Sparc的未来发展方向legendnet368
 
Memory-Driven Near-Data Acceleration and its application to DOME/SKA
 Memory-Driven Near-Data Acceleration and its application to DOME/SKA Memory-Driven Near-Data Acceleration and its application to DOME/SKA
Memory-Driven Near-Data Acceleration and its application to DOME/SKAinside-BigData.com
 
byteLAKE's expertise across NVIDIA architectures and configurations
byteLAKE's expertise across NVIDIA architectures and configurationsbyteLAKE's expertise across NVIDIA architectures and configurations
byteLAKE's expertise across NVIDIA architectures and configurationsbyteLAKE
 
Scaling Open Source Big Data Cloud Applications is Easy/Hard
Scaling Open Source Big Data Cloud Applications is Easy/HardScaling Open Source Big Data Cloud Applications is Easy/Hard
Scaling Open Source Big Data Cloud Applications is Easy/HardPaul Brebner
 
Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Jim Dowling
 
Blue Waters and Resource Management - Now and in the Future
 Blue Waters and Resource Management - Now and in the Future Blue Waters and Resource Management - Now and in the Future
Blue Waters and Resource Management - Now and in the Futureinside-BigData.com
 
Times ten 18.1_overview_meetup
Times ten 18.1_overview_meetupTimes ten 18.1_overview_meetup
Times ten 18.1_overview_meetupByung Ho Lee
 
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facilityinside-BigData.com
 
byteLAKE's Alveo FPGA Solutions
byteLAKE's Alveo FPGA SolutionsbyteLAKE's Alveo FPGA Solutions
byteLAKE's Alveo FPGA SolutionsbyteLAKE
 
Monitoring federation open stack infrastructure
Monitoring federation open stack infrastructureMonitoring federation open stack infrastructure
Monitoring federation open stack infrastructureFernando Lopez Aguilar
 
Spark Development Lifecycle at Workday - ApacheCon 2020
Spark Development Lifecycle at Workday - ApacheCon 2020Spark Development Lifecycle at Workday - ApacheCon 2020
Spark Development Lifecycle at Workday - ApacheCon 2020Pavel Hardak
 
Apache Spark Development Lifecycle @ Workday - ApacheCon 2020
Apache Spark Development Lifecycle @ Workday - ApacheCon 2020Apache Spark Development Lifecycle @ Workday - ApacheCon 2020
Apache Spark Development Lifecycle @ Workday - ApacheCon 2020Eren Avşaroğulları
 
times ten in-memory database for extreme performance
times ten in-memory database for extreme performancetimes ten in-memory database for extreme performance
times ten in-memory database for extreme performanceOracle Korea
 
Big data at experimental facilities
Big data at experimental facilitiesBig data at experimental facilities
Big data at experimental facilitiesIan Foster
 
Kickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.io
Kickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.ioKickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.io
Kickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.ioHostedbyConfluent
 
FME World Tour 2015 - Around the World - Ken Bragg
FME World Tour 2015 - Around the World - Ken BraggFME World Tour 2015 - Around the World - Ken Bragg
FME World Tour 2015 - Around the World - Ken BraggIMGS
 
C Cure Users Group Presentation Final 4
C Cure Users Group Presentation Final 4C Cure Users Group Presentation Final 4
C Cure Users Group Presentation Final 4halgig
 

Similar to Geospatial Synergy: Amplifying Efficiency with FME & Esri ft. Peak Guest Speakers (20)

Sparc的未来发展方向
Sparc的未来发展方向Sparc的未来发展方向
Sparc的未来发展方向
 
Memory-Driven Near-Data Acceleration and its application to DOME/SKA
 Memory-Driven Near-Data Acceleration and its application to DOME/SKA Memory-Driven Near-Data Acceleration and its application to DOME/SKA
Memory-Driven Near-Data Acceleration and its application to DOME/SKA
 
byteLAKE's expertise across NVIDIA architectures and configurations
byteLAKE's expertise across NVIDIA architectures and configurationsbyteLAKE's expertise across NVIDIA architectures and configurations
byteLAKE's expertise across NVIDIA architectures and configurations
 
Scaling Open Source Big Data Cloud Applications is Easy/Hard
Scaling Open Source Big Data Cloud Applications is Easy/HardScaling Open Source Big Data Cloud Applications is Easy/Hard
Scaling Open Source Big Data Cloud Applications is Easy/Hard
 
EOSC-hub & Geohazards TEP
EOSC-hub & Geohazards TEPEOSC-hub & Geohazards TEP
EOSC-hub & Geohazards TEP
 
Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks
 
Blue Waters and Resource Management - Now and in the Future
 Blue Waters and Resource Management - Now and in the Future Blue Waters and Resource Management - Now and in the Future
Blue Waters and Resource Management - Now and in the Future
 
Times ten 18.1_overview_meetup
Times ten 18.1_overview_meetupTimes ten 18.1_overview_meetup
Times ten 18.1_overview_meetup
 
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
 
byteLAKE's Alveo FPGA Solutions
byteLAKE's Alveo FPGA SolutionsbyteLAKE's Alveo FPGA Solutions
byteLAKE's Alveo FPGA Solutions
 
Monitoring federation open stack infrastructure
Monitoring federation open stack infrastructureMonitoring federation open stack infrastructure
Monitoring federation open stack infrastructure
 
Resume Maumita Biswas
Resume Maumita BiswasResume Maumita Biswas
Resume Maumita Biswas
 
Spark Development Lifecycle at Workday - ApacheCon 2020
Spark Development Lifecycle at Workday - ApacheCon 2020Spark Development Lifecycle at Workday - ApacheCon 2020
Spark Development Lifecycle at Workday - ApacheCon 2020
 
Apache Spark Development Lifecycle @ Workday - ApacheCon 2020
Apache Spark Development Lifecycle @ Workday - ApacheCon 2020Apache Spark Development Lifecycle @ Workday - ApacheCon 2020
Apache Spark Development Lifecycle @ Workday - ApacheCon 2020
 
times ten in-memory database for extreme performance
times ten in-memory database for extreme performancetimes ten in-memory database for extreme performance
times ten in-memory database for extreme performance
 
Big data at experimental facilities
Big data at experimental facilitiesBig data at experimental facilities
Big data at experimental facilities
 
Kickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.io
Kickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.ioKickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.io
Kickstart your Kafka with Faker Data | Francesco Tisiot, Aiven.io
 
System mldl meetup
System mldl meetupSystem mldl meetup
System mldl meetup
 
FME World Tour 2015 - Around the World - Ken Bragg
FME World Tour 2015 - Around the World - Ken BraggFME World Tour 2015 - Around the World - Ken Bragg
FME World Tour 2015 - Around the World - Ken Bragg
 
C Cure Users Group Presentation Final 4
C Cure Users Group Presentation Final 4C Cure Users Group Presentation Final 4
C Cure Users Group Presentation Final 4
 

More from Safe Software

Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Breaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologyBreaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologySafe Software
 
Cloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial DataCloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial DataSafe Software
 
New Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s FoundersNew Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s FoundersSafe Software
 
Taking Off with FME: Elevating Airport Operations to New Heights
Taking Off with FME: Elevating Airport Operations to New HeightsTaking Off with FME: Elevating Airport Operations to New Heights
Taking Off with FME: Elevating Airport Operations to New HeightsSafe Software
 
Initiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance StrategyInitiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance StrategySafe Software
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Safe Software
 
Identification of landscape features eligible for EU subsidy - Analysis of la...
Identification of landscape features eligible for EU subsidy - Analysis of la...Identification of landscape features eligible for EU subsidy - Analysis of la...
Identification of landscape features eligible for EU subsidy - Analysis of la...Safe Software
 
Utilizing FME as an API Test Framework
Utilizing FME as an API Test Framework Utilizing FME as an API Test Framework
Utilizing FME as an API Test Framework Safe Software
 
Bringing Open Data Integration to the (SWECO) People
Bringing Open Data Integration to the (SWECO) PeopleBringing Open Data Integration to the (SWECO) People
Bringing Open Data Integration to the (SWECO) PeopleSafe Software
 
Working Forward: From Data to Location Intelligence for Renewables Siting and...
Working Forward: From Data to Location Intelligence for Renewables Siting and...Working Forward: From Data to Location Intelligence for Renewables Siting and...
Working Forward: From Data to Location Intelligence for Renewables Siting and...Safe Software
 
Datendrehscheibe im eGovernment
Datendrehscheibe im eGovernmentDatendrehscheibe im eGovernment
Datendrehscheibe im eGovernmentSafe Software
 
Zugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FME
Zugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FMEZugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FME
Zugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FMESafe Software
 
Let’s Talk About EX – WFS mit Filter EXpressions gezielt abfragen
Let’s Talk About EX – WFS mit Filter EXpressions gezielt abfragenLet’s Talk About EX – WFS mit Filter EXpressions gezielt abfragen
Let’s Talk About EX – WFS mit Filter EXpressions gezielt abfragenSafe Software
 
Nutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfG
Nutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfGNutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfG
Nutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfGSafe Software
 
Möglichkeiten des Zusammenspiels Zwischen FME und ArcGIS
Möglichkeiten des Zusammenspiels Zwischen FME und ArcGISMöglichkeiten des Zusammenspiels Zwischen FME und ArcGIS
Möglichkeiten des Zusammenspiels Zwischen FME und ArcGISSafe Software
 
FME im Kommunalen Umfeld – Aus der Praxis in Die Zukunft
FME im Kommunalen Umfeld – Aus der Praxis in Die ZukunftFME im Kommunalen Umfeld – Aus der Praxis in Die Zukunft
FME im Kommunalen Umfeld – Aus der Praxis in Die ZukunftSafe Software
 
FME als ideales Integrationstool der GB-IT
FME als ideales Integrationstool der GB-ITFME als ideales Integrationstool der GB-IT
FME als ideales Integrationstool der GB-ITSafe Software
 
Die Datenföderierungsschicht im LANUV
Die Datenföderierungsschicht im LANUVDie Datenföderierungsschicht im LANUV
Die Datenföderierungsschicht im LANUVSafe Software
 
FME - Einsatz am Flughafen Frankfurt
FME - Einsatz am Flughafen FrankfurtFME - Einsatz am Flughafen Frankfurt
FME - Einsatz am Flughafen FrankfurtSafe Software
 

More from Safe Software (20)

Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Breaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologyBreaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI Technology
 
Cloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial DataCloud Revolution: Exploring the New Wave of Serverless Spatial Data
Cloud Revolution: Exploring the New Wave of Serverless Spatial Data
 
New Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s FoundersNew Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s Founders
 
Taking Off with FME: Elevating Airport Operations to New Heights
Taking Off with FME: Elevating Airport Operations to New HeightsTaking Off with FME: Elevating Airport Operations to New Heights
Taking Off with FME: Elevating Airport Operations to New Heights
 
Initiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance StrategyInitiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance Strategy
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
 
Identification of landscape features eligible for EU subsidy - Analysis of la...
Identification of landscape features eligible for EU subsidy - Analysis of la...Identification of landscape features eligible for EU subsidy - Analysis of la...
Identification of landscape features eligible for EU subsidy - Analysis of la...
 
Utilizing FME as an API Test Framework
Utilizing FME as an API Test Framework Utilizing FME as an API Test Framework
Utilizing FME as an API Test Framework
 
Bringing Open Data Integration to the (SWECO) People
Bringing Open Data Integration to the (SWECO) PeopleBringing Open Data Integration to the (SWECO) People
Bringing Open Data Integration to the (SWECO) People
 
Working Forward: From Data to Location Intelligence for Renewables Siting and...
Working Forward: From Data to Location Intelligence for Renewables Siting and...Working Forward: From Data to Location Intelligence for Renewables Siting and...
Working Forward: From Data to Location Intelligence for Renewables Siting and...
 
Datendrehscheibe im eGovernment
Datendrehscheibe im eGovernmentDatendrehscheibe im eGovernment
Datendrehscheibe im eGovernment
 
Zugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FME
Zugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FMEZugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FME
Zugriff auf alle raumbezogenen Daten - direkt in Ihrem WebGIS durch FME
 
Let’s Talk About EX – WFS mit Filter EXpressions gezielt abfragen
Let’s Talk About EX – WFS mit Filter EXpressions gezielt abfragenLet’s Talk About EX – WFS mit Filter EXpressions gezielt abfragen
Let’s Talk About EX – WFS mit Filter EXpressions gezielt abfragen
 
Nutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfG
Nutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfGNutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfG
Nutzung der FME im Nationalen Berichtsdatenzentrum Wasser der BfG
 
Möglichkeiten des Zusammenspiels Zwischen FME und ArcGIS
Möglichkeiten des Zusammenspiels Zwischen FME und ArcGISMöglichkeiten des Zusammenspiels Zwischen FME und ArcGIS
Möglichkeiten des Zusammenspiels Zwischen FME und ArcGIS
 
FME im Kommunalen Umfeld – Aus der Praxis in Die Zukunft
FME im Kommunalen Umfeld – Aus der Praxis in Die ZukunftFME im Kommunalen Umfeld – Aus der Praxis in Die Zukunft
FME im Kommunalen Umfeld – Aus der Praxis in Die Zukunft
 
FME als ideales Integrationstool der GB-IT
FME als ideales Integrationstool der GB-ITFME als ideales Integrationstool der GB-IT
FME als ideales Integrationstool der GB-IT
 
Die Datenföderierungsschicht im LANUV
Die Datenföderierungsschicht im LANUVDie Datenföderierungsschicht im LANUV
Die Datenföderierungsschicht im LANUV
 
FME - Einsatz am Flughafen Frankfurt
FME - Einsatz am Flughafen FrankfurtFME - Einsatz am Flughafen Frankfurt
FME - Einsatz am Flughafen Frankfurt
 

Recently uploaded

Embracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio ManagementEmbracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio ManagementOnePlan Solutions
 
killing camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdfkilling camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdfssuser82c38d
 
P1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 SmartsheetP1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 SmartsheetMatthewTHawley
 
Self scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsSelf scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsBram Vogelaar
 
OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20Shane Coughlan
 
Sql server types of joins with example.pptx
Sql server types of joins with example.pptxSql server types of joins with example.pptx
Sql server types of joins with example.pptxsameer gaikwad
 
maximum subarray ppt for killing camp students
maximum subarray ppt for killing camp studentsmaximum subarray ppt for killing camp students
maximum subarray ppt for killing camp studentsssuser82c38d
 
"Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ...
"Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ..."Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ...
"Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ...ISPMAIndia
 
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...confluent
 
Steps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfSteps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfayushinwizards
 
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdfAUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdfAutokey
 
AI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit BendigiriAI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit BendigiriISPMAIndia
 
Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...
Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...
Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...ISPMAIndia
 
App Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxApp Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxPoojitha B
 
Essence of Requirements Engineering: Pragmatic Insights for 2024
Essence of Requirements Engineering: Pragmatic Insights for 2024Essence of Requirements Engineering: Pragmatic Insights for 2024
Essence of Requirements Engineering: Pragmatic Insights for 2024Asher Sterkin
 
DBA Fundamentals Group: Continuous SQL with Kafka and Flink
DBA Fundamentals Group: Continuous SQL with Kafka and FlinkDBA Fundamentals Group: Continuous SQL with Kafka and Flink
DBA Fundamentals Group: Continuous SQL with Kafka and FlinkTimothy Spann
 
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)GDSCNiT
 
SPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product ManagementSPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product ManagementISPMAIndia
 
Manual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12FxManual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12Fxjavierdavidvelasco17
 

Recently uploaded (20)

Embracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio ManagementEmbracing Change - The Impact of Generative AI on Strategic Portfolio Management
Embracing Change - The Impact of Generative AI on Strategic Portfolio Management
 
killing camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdfkilling camp week 6 problem - maximal matrix.pdf
killing camp week 6 problem - maximal matrix.pdf
 
P1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 SmartsheetP1 Inspection Types in Municity 5 Smartsheet
P1 Inspection Types in Municity 5 Smartsheet
 
Self scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsSelf scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloads
 
OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20OpenChain AI Study Group - North America and Europe - 2024-02-20
OpenChain AI Study Group - North America and Europe - 2024-02-20
 
Sql server types of joins with example.pptx
Sql server types of joins with example.pptxSql server types of joins with example.pptx
Sql server types of joins with example.pptx
 
maximum subarray ppt for killing camp students
maximum subarray ppt for killing camp studentsmaximum subarray ppt for killing camp students
maximum subarray ppt for killing camp students
 
"Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ...
"Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ..."Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ...
"Taking an idea to a Product in Health diagnostics" by Dr. Geetha Manjunath, ...
 
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
 
Steps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfSteps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdf
 
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdfAUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
AUTOKEYUNLOCKER-BRANDS-SUPPORT-STANDARD-VERSION.pdf
 
AI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit BendigiriAI Product Management by Abhijit Bendigiri
AI Product Management by Abhijit Bendigiri
 
Features of IETM Software -Code and Pixels
Features of IETM Software -Code and PixelsFeatures of IETM Software -Code and Pixels
Features of IETM Software -Code and Pixels
 
Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...
Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...
Product Manager vs Product Owner – Why Do Companies Still Struggle 23 Years A...
 
App Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxApp Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptx
 
Essence of Requirements Engineering: Pragmatic Insights for 2024
Essence of Requirements Engineering: Pragmatic Insights for 2024Essence of Requirements Engineering: Pragmatic Insights for 2024
Essence of Requirements Engineering: Pragmatic Insights for 2024
 
DBA Fundamentals Group: Continuous SQL with Kafka and Flink
DBA Fundamentals Group: Continuous SQL with Kafka and FlinkDBA Fundamentals Group: Continuous SQL with Kafka and Flink
DBA Fundamentals Group: Continuous SQL with Kafka and Flink
 
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
 
SPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product ManagementSPM 2024 – Overview of and benefits of AI in Product Management
SPM 2024 – Overview of and benefits of AI in Product Management
 
Manual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12FxManual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12Fx
 

Geospatial Synergy: Amplifying Efficiency with FME & Esri ft. Peak Guest Speakers

  • 2. Agenda 1 Introduction 2 Safe & FME 3 Jan, Locus: Optimizing Bulk Data Updates in ArcGIS Online 4 James, 1Spatial: Model build ArcPy - FME 5 Resources & Next Steps 6 Q&A Agenda
  • 3. Welcome to Livestorm. A few ways to engage with us during the webinar: Audio issues? Click this for 4 simple troubleshooting steps.
  • 5. Explore the remarkable possibilities that open up when FME and Esri technologies converge. And manage your geospatial data with unprecedented efficiency. Introduction
  • 6. One platform, two technologies FME Form FME Flow Build and run data workflows Automate data workflows FME Flow Hosted Safe Software managed instance fme.safe.com/platform FME Enterprise Integration Platform Safe & FME
  • 8. Jan Roggisch GIS & System Integration Consultant Locus Limited Optimizing Bulk Data Updates in ArcGIS Online
  • 9. Agenda 1. Who is the client? 2. What is their challenge? 3. How did Locus help? 4. Conclusion
  • 11. Auckland Council (Org.) https://en.wikipedia.org/wiki/Auckland_Region#/map/0 ● Established in 2010 ● Service area ~5,000 km2 ● Population >1.6 million ● ~12,000 staff ● Annual budget $3 billion ● Largest council in Oceania Optimizing Bulk Data Updates in ArcGIS Online
  • 12. Auckland Council (GIS) ● ArcGIS-based public maps & apps ● Datasets are ○ diverse ○ complex ○ large ○ Dynamic ● Need for scalability and resilience (e.g. 2023 Floods) Optimizing Bulk Data Updates in ArcGIS Online
  • 13. Auckland Anniversary Weekend Floods Newsroo m Richard Easther/Twitter NZ Herald Optimizing Bulk Data Updates in ArcGIS Online
  • 15. First Steps No infrastructure maintenance Scalability, Resilience, Security built-in Upgrades taken care of Duration service outage Timing after-hours work Dependent on on-premise data processes Optimizing Bulk Data Updates in ArcGIS Online Host data and apps in ArcGIS Online Challenges around data updates
  • 16. Hosted view ● Requires identical FGDBs (schema) ● Manually update FDGBs and services ● Manually switch view source Optimizing Bulk Data Updates in ArcGIS Online
  • 17. Optimizing Bulk Data Updates in ArcGIS Online
  • 18. Hosted view ● Requires identical FGDBs (schema) ● Manually update FDGBs and services ● Manually switch view source Optimizing Bulk Data Updates in ArcGIS Online
  • 20. What to do? ● ArcGIS Admin REST API ● Esri documentation ● Excel-pattern ● Trial & Error Optimizing Bulk Data Updates in ArcGIS Online
  • 21. The result – FGDB replacement ● 61 transformers ● 7 x HttpCaller ● JsonX-Former ● Dedicated error stream Optimizing Bulk Data Updates in ArcGIS Online
  • 22. The result – data source swap ● 67 transformers ● 8 x HttpCaller ● JsonX-Former ● Dedicated error stream Optimizing Bulk Data Updates in ArcGIS Online
  • 23. The result – master workspace Optimizing Bulk Data Updates in ArcGIS Online
  • 25. 1. Data updates fully automated 2. Downtime reduced to seconds 3. Improved public service delivery Recap Conclusion
  • 29. Agenda 1. Species of National Significance 2. Case Study – Raster Gridding 3. Vector to Raster conversion 4. ESRI vs FME raster gridding tools 5. ArcPy within FME – featureclass processing 6. Tips & Tricks
  • 31. Biodiversity Changes to the landscape and native habitat as a result of human activity have put many species at risk of extinction. Ecological communities are unique and naturally occurring groups of plants and animals. Their presence can be determined by factors such as soil type, position in the landscape, climate and water availability. Environment Protection and Biodiversity Act 1999 (EPBC Act) protects Australia's native species and ecological communities. • Identification and listing of species and ecological communities as threatened • Development of conservation advice and recovery plans for listed species and ecological communities • Register of critical habitat • Recognition of key threatening processes • Where appropriate, reducing the impacts of these processes through threat abatement plans and non-statutory threat abatement advices Model build ArcPy - FME
  • 32. Threatened Ecological Communities of Australia (dcceew.gov.au)
  • 34. Species of National Significance Information as listed in the Environment Protection and Biodiversity Act 1999 (EPBC act) 1. Ecological community name 2. Ecological threatened status ○ Critically Endangered, Endangered, Vulnerable or Conservation Dependent 3. Indicative occurrence (known and predicted areas) produced by spatial ecologists 4. Cell size for public access ○ 1 km grid resolution (0.01°) or ○ ~10km for species classed as (SNES) sensitive by respective States and Territories. 5. Links to further information in the Species Profile and Threats Database (SPRAT) Model build ArcPy - FME
  • 35. Why Generalize? Data source: Australia - Species of National Environmental Significance Distributions (public grids) | Find Environmental Data (dcceew.gov.au) To provide information to the community about Australia’s protected species, and in line with the Government’s policy of open data access, the Department’s threatened and migratory species distributions have been generalized to 1km and 10km The generalized product is aimed at addressing concerns regarding the release of detailed locations of species sensitive to illegal collection and disturbance while still providing public access to the distributions of threatened species. Indicative occurrence - coded to indicate species presence (pres_rank) with: 1 ‘Species or species habitat likely to occur’ and 2 ‘Species or species habitat may occur’. Model build ArcPy - FME
  • 36. Processing Species data Department was seeking to improve spatial generalization methods to process Species Distributions ● Current automated python scripts are difficult to maintain. ● Manual steps and QA checks run several times per week to keep it up to date ● Complex set of business rules dictate which species are to use private or public grids… ● Hiding details for sensitive species Can an FME workflow replace or support the above requirements? Model build ArcPy - FME
  • 37. Model build ArcPy - FME Species Distribution Polygons SPRAT changes (insert, update, delete) Public 1km Public 10km CHANGEDATE WORK_PERFORMED FME_DB_OPERATION 20220811 Deyeuxia ramosa (87970) - SEAP new distribution INSERT 20220811 Nematolepis rhytidophylla (64936) - SEAP updated distribution INSERT 20220811 Pherosphaera fitzgeraldii (40324) - SEAP updated distribution UPDATE 20220811 Syncomistes rastellus (88733) - SEAP new distribution INSERT (filter) Individual Taxon cell assignment type = maximum area pres_rank = gridcode priority = 100-gridcode cell_size = 0.01, 0.1 Generalisation 1. Vector to Raster 2. Raster to Vector snap raster (assign) Sensitive Species 46 36 36 36 36 26 Original Polygon 26 26 1km Raster Grid 10km Raster Grid Generalised Polygon
  • 38. ESRI Gridding Existing approach…. Polygon to raster conversion • Cell assignment Maximum Area • Priority is specified (100-Presence_Rank) e.g., 100 minus 26 = 74. The small “Known” presence given largest cell yields due to high 74 priority • Environment Snap raster used as a template raster grid (next slide) 64 64 64 64 74 54 64 74 54 54 74 64 64 64 64 Model build ArcPy - FME
  • 39. Snap raster reference An environment used to snap or align an extent during execution Snapping usually results in a larger output extent than the given extent. Data source: https://pro.arcgis.com/en/pro-app/latest/tool-reference/environment-setti ngs/how-snap-raster-environment-works.htm Figure (b) shows the snapped extent after execution. Figure (a) shows the extent to be snapped. 74 Model build ArcPy - FME
  • 40. FME Gridding Test alternative approaches…. Raster gridding transformers • NumericRasteriser - creates single-band numeric raster. Precede with 3DForcer for Priority and followed by RasterMosaicker where cell assignment (Overlapping Values) = maximum Summary: • use RasterPropertyExtractor after reading snapraster dataset • 1-1 featuremerger with features to process • NumRaster to use values @round(<ground extents>) and cell spacing • slightly slower than ArcGIS • grid extents end up larger • a dissolve is required as secondary step for cell assignment Model build ArcPy - FME
  • 43. ArcPRO - Export to Python Both model builder and the Geoprocessing “History” have an option to export Python script Data Source: https://pro.arcgis.com/en/pro-app/latest/help/analysis/geoprocessing/modelbuilder/exporting-a-model-to-python.htm Model build ArcPy - FME
  • 44. Feature Class Processing - ArcPy in FME 1. Expose _dataset or use a PATH reader 2. AttributeCreator for names of feature classes and file paths for input & output feature classes 3. Run the ArcPy operation on incoming feature class using the PythonCaller transformer 4. Read the results back into the FME workspace with the FeatureReader transformer Model build ArcPy - FME
  • 45. Cell size '0.1', '0.01', '0.001’ equates to 10km, 1km, 100m Summary Vector-Raster Raster to Vector Input feature
  • 46. Prerequisites: ArcPRO license and spatial analyst extension Set workspace - _dataset is from working_gdb FeatureReader Vector to raster – maximum cell, snapraster, priority Raster to vector – using output paths
  • 47. FME Tips using Python • Set environments to working geodatabase + overwrite output true • Variables for workspace cell size = feature.getAttribute(‘_path%’) arcpy.env.snapraster cell_size • Replace(‘’, ‘’) if any spaces in paths • FMElogfile() concatenate attributes in a notification string and inform geoprocessing progress in the transaction log. • Feature cache mode needs to be emptied To avoid locks, errors 160001-170000 table exists, click the overwrite geodatabase in full Data Source: https://community.safe.com/s/article/using-arcpy-for-fme-feature-processing Model build ArcPy - FME
  • 49. FME workflow with ArcGeoprocessing OUTPUTS fileGDB SNES Public Species with metadata SDE SNES Public Species QA report CHILD WORKSPACE INPUTS Workspace Runner metadata Last load date SPRAT Find all the additions/updates to TaxonIDs Generalising ArcPy – Polygon-Raster-Polygon generaliser_working.gdb & snap raster Process individual Taxons Species Grids Business rules Sensitive Species Resolution Synonymy wkhtmltopdf PARENT WORKSPACE Model build ArcPy - FME
  • 50. Summary • ArcGIS gridding functionality & approach were most consistent to the generalization requirements for processing species distribution grids. • FME superior in terms of orchestrating the integration visually. Where FME transformers lack ESRI functionality, incorporate ArcPy to do the geoprocessing mid workflow. • Get out and support local conservation efforts! Model build ArcPy - FME
  • 51. Resources • DCCEEW www.dcceew.gov.au/environment/biodiversity/threatened • https://community.safe.com/s/article/notes-on-fme-and-esri-versions-and-compatibility • ESRI How Polygon To Raster works—ArcGIS Pro • ESRI ArcPro snap raster • FME NumericRasteriser Popularity = 167/468 • Using Arcpy for FME Feature Processing Model build ArcPy - FME
  • 54. Get our Ebook Spatial Data for the Enterprise fme.ly/gzc Guided learning experiences at your fingertips community.safe.com /s/academy FME Academy Resources & Next Steps
  • 55. Check out how-to’s & demos in the knowledge base community.safe.com /s/knowledge-base Knowledge Base Webinars Upcoming & on-demand webinars safe.com/webinars Resources & Next Steps
  • 56. We’d love to help you get started. Get in touch with us at info@safe.com Experience the FME Accelerator Contact Us Unlock the power of your data in only 90 minutes Register for free at fme.safe.com/accelerator Resources & Next Steps
  • 57. ClaimYour Community Badge ● Get community badges for watching webinars! ● fme.ly/WebinarBadge ● Today’s code: CGFLA Join the Community today! Resources & Next Steps
  • 58. 6 Q&A
  • 59. ThankYou Recap of Next Steps 1 Join the FME Community 2 Contact James: james.botterill@1spatial.com & Jan: jan.roggisch@locus.co.nz 3 Experience the FME Accelerator Please fill out our webinar survey