Successfully reported this slideshow.
Your SlideShare is downloading. ×

Enhanced Topographic Analysis Tools

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 25 Ad

More Related Content

Slideshows for you (20)

Similar to Enhanced Topographic Analysis Tools (20)

Advertisement

More from Soil and Water Conservation Society (20)

Recently uploaded (20)

Advertisement

Enhanced Topographic Analysis Tools

  1. 1. Enhanced topographic analysis tools for watershed assessment of integrated conservation management practice Ronald L. Bingner Robert R. Wells USDA-ARS-National Sedimentation Laboratory Oxford, Mississippi Henrique G. Momm Department of Geosciences Middle Tennessee State University Murfreesboro, Tennessee Yongping Yuan USEPA Las Vegas, Nevada Jurgen Garbrecht USDA-ARS-Grazinglands Research Laboratory El Reno, Oklahoma
  2. 2. Outline • Overview of USDA TOPAGNPS topographic  analysis technology for use with AnnAGNPS • Overview of ephemeral gully, riparian buffer,  wetland watershed enhancements • Example watershed applications for  integrated conservation practice evaluation  and assessment. • Summary
  3. 3. Watershed Management Planning What practices to use & where to place them? Cover Crops Buffers Grass Waterways Constructed Wetlands No-Till
  4. 4. AnnAGNPS – Annualized Agricultural Nonpoint Source Pollution Model  Evaluates the integrated effect of agricultural conservation practices, riparian buffers and wetlands for watershed management planning.  Uses RUSLE2 science and databases.  Tracks pollutants from their source (sheet & rill, gully, channel, point source, feedlot).
  5. 5. TOPAZ Topographic Parameterization Tool v3.2  (Garbrecht & Martz, 1997) AN AUTOMATED DIGITAL LANDSCAPE ANALYSIS TOOL FOR:  • TOPOGRAPHIC EVALUATION • DRAINAGE IDENTIFICATION  • WATERSHED SEGMENTATION • SUBCATCHMENT PARAMETERIZATION
  6. 6. Automatically Determined Watershed Delineation AnnAGNPS CELLS CONNECTED BY THE CHANNEL NETWORK
  7. 7. TOPAZ Enhancements ‐ TOPAGNPS • Linked with AnnAGNPS • Utilizes 64‐bit OS for increased speed and memory • Allows submeter DEM resolution • Utilizes a graphical user interface • Incorporates standard GIS input and output capabilities • Defines RUSLE LS‐factor values • Integrates all TOPAZ and TOPAGNPS modules into a  single program • Adds ephemeral gully, riparian buffer, constructed &  pothole wetland identification & characterization.
  8. 8. RUSLE Landscape (AnnAGNPS Cells) Overland flow Interrill Rill Ephemeral Gully (Concentrated flow) Erosion Types
  9. 9. Integrating Gully, Wetland & Buffer Components within Watershed Models Cell F Cell E Cell D Cell CCell A Cell B watershed outlet feedlot gully A wetland is located on reach 2, buffer in reach 1, more wetlands can be constructed on other reaches such as reach 1 and 3
  10. 10. Tillage-Induced Ephemeral Gully Erosion Formation August 26, 2005 In an USA Wheat Field in Kansas Ephemeral Gully October 17, 2005 Ephemeral Gully Hidden by Wheat Cover Conditions Can Hide Ephemeral Gullies
  11. 11. TOPAGNPS • Ephemeral Gullies – AnnAGNPS uses the concept of “potential ephemeral gully” – Despite the available gully modeling capabilities, a critical AnnAGNPS input is the location of downstream gully channel initiation (existing or  potential) – On watershed scale the identification of these locations is difficult and  time‐consuming – TOPAGNPS identifies & characterizes EGs 11
  12. 12. March 2013 Watershed‐Scale Characterization of Riparian Vegetation as Potential Filter Strips using Multi‐Source Remote Sensing  12 Influence of natural and/or planted riparian  (streamside) vegetative buffer strips The amount of sediment/chemicals trapped by buffers is  affected by: • Width of the riparian buffer • Type of vegetation cover • Amount and intensity of rainfall • Runoff characteristics • Local terrain slope
  13. 13. Trapping Efficiency A quantitative measure of the sediment transport  reduction by riparian buffers
  14. 14. March 2013 Watershed‐Scale Characterization of Riparian Vegetation as Potential Filter Strips using Multi‐Source Remote Sensing  14 TOPAGNPS Riparian Buffer GIS representation AnnAGNPS cells &  reaches Buffer
  15. 15. March 2013 Watershed‐Scale Characterization of Riparian Vegetation as Potential Filter Strips using Multi‐Source Remote Sensing  15 Trapping Efficiency  Existing models Flow Buffer Local slope One‐dimensional representation: Proxy Two‐dimensional representation: TOPAGNPS
  16. 16. March 2013 Watershed‐Scale Characterization of Riparian Vegetation as Potential Filter Strips using Multi‐Source Remote Sensing  16 TOPAGNPS TE Estimation in AnnAGNPS Cells includes the effect of  concentrated flow paths through buffers (short‐circuits) A 0 0 0 1 2 3 4 5 6 TE = 97% Potential short‐ circuits TE = 90% TE = 47% Varying widths & lengths
  17. 17. TOPAGNPS Wetland Feature For more info: Momm et al. 2016 article in Transactions of the ASABE TOPAGNPS estimates  wetland/pond extents AnnAGNPS determines wetland  sediment trapping efficiency AnnAGNPS tracks pollutants from their  source to any point in the watershed
  18. 18. Goodwin Creek Experimental Watershed - Station #14 Subarea Analysis Subarea for Analysis
  19. 19. Goodwin Creek Subarea AnnAGNPS System Characterization 1979 Image Conventional Tillage AnnAGNPS Subarea Boundary AnnAGNPS Reach Ephemeral Gully Installed Managed Buffer Natural Buffer
  20. 20. Goodwin Creek Subarea Changes 2012 Conventional Tillage to Pasture – Buffer Expansion Natural Buffer 1979 Natural Buffer 2012 Pasture Ephemeral Gully Controlled
  21. 21. Sheet & Rill Source Sediment Loads to Subarea Outlet - Buffer Effects No Buffers Natural Buffer Effects Natural & Managed Buffer Effects
  22. 22. Summary • Technology has been developed within AnnAGNPS to  evaluate integrated sheet & rill, gully, and channel  erosion control practices including wetland and  riparian buffer effects on pollutant loads at a  watershed‐scale  • AnnAGNPS incorporates pollutant source load  technology to assess the origin of pollutant loads  transported to any point in the watershed, including  wetland and buffer capability to reduce pollutant  loads at any location within a watershed
  23. 23. Thank you
  24. 24. Questions

×