Is exercise2

STI Innsbruck
STI InnsbruckSTI Innsbruck

Is exercise2

 
1	
  
STI	
  Innsbruck,	
  University	
  Innsbruck	
  
	
  
	
  
	
  
	
  
Intelligent	
  Systems	
  
Exercise	
  sheet	
  2	
  
Propositional	
  Logic	
  
	
  
Exercise	
  11
	
  (10	
  points)	
  
Show	
  that	
  the	
  following	
  formulas	
  are	
  equivalent	
  using	
  (a)	
  truth	
  tables	
  and	
  (b)	
  deduction	
  rules	
  (two	
  sub-­‐
exercises!)	
  
U=((A∨¬(B∧A))∧(C∨(D∨C)))	
  
V=(C∨D)	
  
Exercise	
  2	
  (10	
  points)	
  
Decide	
  for	
  the	
  following	
  formulas	
  if	
  they	
  are	
  valid,	
  satisfiable,	
  or	
  unsatisfiable:	
  
(a) (A∨¬B∨C)∧(¬A∨B∨¬C)	
  	
  
(b) A∧(¬B∨¬A)∧B∧(¬B∨A)	
  
(c) ¬(A∧B)	
  ⇔(¬A∨¬B)	
  
	
  
Exercise	
  32
	
  (10	
  points)	
  
Given	
  the	
  following,	
  can	
  you	
  prove	
  that	
  the	
  unicorn	
  is	
  mythical?	
  How	
  about	
  magical?	
  Horned?	
  
If	
  the	
  unicorn	
  is	
  mythical,	
  then	
  it	
  is	
  immortal,	
  but	
  if	
  it	
  is	
  not	
  mythical,	
  then	
  it	
  is	
  a	
  mortal	
  mammal.	
  If	
  the	
  
unicorn	
  is	
  either	
  immortal	
  or	
  a	
  mammal,	
  then	
  it	
  is	
  horned.	
  The	
  unicorn	
  is	
  magical	
  if	
  it	
  is	
  horned.	
  
	
  
Formalize	
  this	
  problem	
  in	
  propositional	
  logic	
  and	
  solve	
  it	
  using	
  Resolution.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Exercise	
  from	
  U.	
  Schöning	
  
2	
  Exercise	
  from	
  Russell/Norvig	
  
 
2	
  
	
  

Recommended

Is exercise2 by
Is exercise2Is exercise2
Is exercise2STI Innsbruck
14 views2 slides
Computer Science and Information Science 3rd semester (2011-July) Question Pa... by
Computer Science and Information Science 3rd semester (2011-July) Question Pa...Computer Science and Information Science 3rd semester (2011-July) Question Pa...
Computer Science and Information Science 3rd semester (2011-July) Question Pa...B G S Institute of Technolgy
4.9K views12 slides
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge by
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
1.3K views22 slides
Solving Qe by
Solving QeSolving Qe
Solving QeIman Izzati
443 views8 slides
Derivative Flashcards by
Derivative FlashcardsDerivative Flashcards
Derivative Flashcardsguested5ffd
362 views29 slides
HYPERBOLIC FUNCTION by
HYPERBOLIC FUNCTIONHYPERBOLIC FUNCTION
HYPERBOLIC FUNCTIONshahzadebaujiti
707 views37 slides

More Related Content

What's hot

Applied 20S December 18, 2008 by
Applied 20S December 18, 2008Applied 20S December 18, 2008
Applied 20S December 18, 2008Darren Kuropatwa
290 views13 slides
Funções 7 by
Funções  7Funções  7
Funções 7KalculosOnline
31 views8 slides
A new integer programming model for hp problem by
A new integer programming model for hp problemA new integer programming model for hp problem
A new integer programming model for hp problemwonther
336 views15 slides
AP Calculus January 21, 2009 by
AP Calculus January 21, 2009AP Calculus January 21, 2009
AP Calculus January 21, 2009Darren Kuropatwa
273 views13 slides
Imo2014 sl by
Imo2014 slImo2014 sl
Imo2014 slChristos Loizos
264 views87 slides
Calc 5.8b by
Calc 5.8bCalc 5.8b
Calc 5.8bhartcher
593 views9 slides

What's hot(8)

A new integer programming model for hp problem by wonther
A new integer programming model for hp problemA new integer programming model for hp problem
A new integer programming model for hp problem
wonther336 views
Calc 5.8b by hartcher
Calc 5.8bCalc 5.8b
Calc 5.8b
hartcher593 views
Tutorial 1(julai2006) by wsf6276
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)
wsf6276418 views
Workshop by gsenno
WorkshopWorkshop
Workshop
gsenno1.1K views

More from STI Innsbruck

Lecture5a by
Lecture5aLecture5a
Lecture5aSTI Innsbruck
135 views49 slides
Lecture5 by
Lecture5Lecture5
Lecture5STI Innsbruck
72 views27 slides
Lecture4a by
Lecture4aLecture4a
Lecture4aSTI Innsbruck
87 views15 slides
Lecture4 by
Lecture4Lecture4
Lecture4STI Innsbruck
67 views21 slides
Lecture3 by
Lecture3Lecture3
Lecture3STI Innsbruck
71 views47 slides
Lecture2 by
Lecture2Lecture2
Lecture2STI Innsbruck
57 views26 slides

More from STI Innsbruck(20)

11 -web_application_development_process_and_project_management_ by STI Innsbruck
11  -web_application_development_process_and_project_management_11  -web_application_development_process_and_project_management_
11 -web_application_development_process_and_project_management_
STI Innsbruck101 views
06 testing and-usability_on_the_web by STI Innsbruck
06 testing and-usability_on_the_web06 testing and-usability_on_the_web
06 testing and-usability_on_the_web
STI Innsbruck68 views
04a developing applications-with_web_ml by STI Innsbruck
04a developing applications-with_web_ml04a developing applications-with_web_ml
04a developing applications-with_web_ml
STI Innsbruck57 views

Recently uploaded

Six Sigma Concept by Sahil Srivastava.pptx by
Six Sigma Concept by Sahil Srivastava.pptxSix Sigma Concept by Sahil Srivastava.pptx
Six Sigma Concept by Sahil Srivastava.pptxSahil Srivastava
40 views11 slides
Narration lesson plan by
Narration lesson planNarration lesson plan
Narration lesson planTARIQ KHAN
69 views11 slides
Volf work.pdf by
Volf work.pdfVolf work.pdf
Volf work.pdfMariaKenney3
75 views43 slides
Berry country.pdf by
Berry country.pdfBerry country.pdf
Berry country.pdfMariaKenney3
61 views12 slides
EILO EXCURSION PROGRAMME 2023 by
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023info33492
181 views40 slides
11.30.23A Poverty and Inequality in America.pptx by
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptxmary850239
86 views18 slides

Recently uploaded(20)

Six Sigma Concept by Sahil Srivastava.pptx by Sahil Srivastava
Six Sigma Concept by Sahil Srivastava.pptxSix Sigma Concept by Sahil Srivastava.pptx
Six Sigma Concept by Sahil Srivastava.pptx
Sahil Srivastava40 views
Narration lesson plan by TARIQ KHAN
Narration lesson planNarration lesson plan
Narration lesson plan
TARIQ KHAN69 views
EILO EXCURSION PROGRAMME 2023 by info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492181 views
11.30.23A Poverty and Inequality in America.pptx by mary850239
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptx
mary85023986 views
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx by Niranjan Chavan
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Niranjan Chavan38 views
Nelson_RecordStore.pdf by BrynNelson5
Nelson_RecordStore.pdfNelson_RecordStore.pdf
Nelson_RecordStore.pdf
BrynNelson546 views
Class 9 lesson plans by TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN68 views
11.28.23 Social Capital and Social Exclusion.pptx by mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239409 views
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx by Niranjan Chavan
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptxSURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx
Niranjan Chavan43 views

Is exercise2

  • 1.   1   STI  Innsbruck,  University  Innsbruck           Intelligent  Systems   Exercise  sheet  2   Propositional  Logic     Exercise  11  (10  points)   Show  that  the  following  formulas  are  equivalent  using  (a)  truth  tables  and  (b)  deduction  rules  (two  sub-­‐ exercises!)   U=((A∨¬(B∧A))∧(C∨(D∨C)))   V=(C∨D)   Exercise  2  (10  points)   Decide  for  the  following  formulas  if  they  are  valid,  satisfiable,  or  unsatisfiable:   (a) (A∨¬B∨C)∧(¬A∨B∨¬C)     (b) A∧(¬B∨¬A)∧B∧(¬B∨A)   (c) ¬(A∧B)  ⇔(¬A∨¬B)     Exercise  32  (10  points)   Given  the  following,  can  you  prove  that  the  unicorn  is  mythical?  How  about  magical?  Horned?   If  the  unicorn  is  mythical,  then  it  is  immortal,  but  if  it  is  not  mythical,  then  it  is  a  mortal  mammal.  If  the   unicorn  is  either  immortal  or  a  mammal,  then  it  is  horned.  The  unicorn  is  magical  if  it  is  horned.     Formalize  this  problem  in  propositional  logic  and  solve  it  using  Resolution.                                                                                                                             1  Exercise  from  U.  Schöning   2  Exercise  from  Russell/Norvig