Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Potential of Agrophotovoltaic systems to reduce land use competition between biomass and power production


Published on

Presentation by Daniel Ketzer ITAS/KIT/Stockholm University - at the young researchers meeting on multifunctional landscapes, Gothenburg June 7-8, 2016.

Published in: Environment
  • Be the first to comment

  • Be the first to like this

Potential of Agrophotovoltaic systems to reduce land use competition between biomass and power production

  1. 1. KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Technology Assessment and Systems Analysis (ITAS) Department for Physical Geography and Quaternary Geology, Stockholm University Daniel Ketzer Source: University Montpellier Source: University Montpellier Source: Makota Takazawa Potential of Agrophotovoltaic systems to reduce land use competition between biomass and power production Agr4D-Young Researchers Meeting Gothenburg June 7th, 2016
  2. 2. ITAS, Stockholm University2 Structure Project APV-RESOLA Background Research Design Outlook Daniel KetzerJune 7th, 2016
  3. 3. ITAS, Stockholm University3 Background Daniel KetzerJune 7th, 2016
  4. 4. ITAS, Stockholm University4 Background Daniel KetzerJune 7th, 2016 Quelle: (SRU, 2010)
  5. 5. ITAS, Stockholm University5 Background Possible quantitative and qualitative extra yield Consistent insolation rates under PV-systems will be enabled (Patent application by Fraunhofer ISE, under review) Daniel KetzerJune 7th, 2016 Photosynthetically Active Radiation (PAR) in %
  6. 6. ITAS, Stockholm University6 Project APV-RESOLA Daniel KetzerJune 7th, 2016 Source: Fraunhofer ISE 1: Energy autarky with future energy storage. 2: Direct- marketing of power to residential areas nearby. 3: Power feed-in into national electricity and gas grids.
  7. 7. ITAS, Stockholm University7 APV-Consortium Funding: German Ministry for Education & Research, BMBF Projection duration: March 2015 to June 2019 Budget: 3.2 Mio. €, of which 87.5% public funds Consortium from research and industry Project leader: Stephan Schindele, Fraunhofer ISE June 7th, 2016 Daniel Ketzer
  8. 8. ITAS, Stockholm University8 Research design APV-RESOLA Work packages Technology Energy industry Agriculture Biodiversity Society Concept of Responsible Research and Innovation Sustainable innovation concept: aims at providing innovation supporting advice for politicians, service contractors, and technology developers Daniel KetzerJune 7th, 2016
  9. 9. ITAS, Stockholm University9 APV-Pilot at Heggelbachhof June 7th, 2016 Source: Google Maps / Representation by Fraunhofer ISE Daniel Ketzer Reference area APV pilot area Working direction
  10. 10. ITAS, Stockholm University10 APV-Pilot at Heggelbachhof June 7th, 2016 Daniel Ketzer APV pilot area Source: Fraunhofer ISE Source: Hilber Solar Prototype
  11. 11. ITAS, Stockholm University11 Targets APV-technology Political targets: Additional RE capacity Decentralized energy production Regional added value from RE Impact: Food vs. fuel dilemma Changes in biodiversity Changes in landscape/ scenery APV-technology as a solution for: Double use of areas by combining agriculture with open space PV (up to 6 m above ground) Benefits for plant cultivation Additional added value without risking existing agricultural businesses June 7th, 2016 Daniel Ketzer
  12. 12. ITAS, Stockholm University12 Outlook Installation of pilot plant: Summer 2016 Plant cultivation studies at pilot plant Second citizen workshop Stakeholder-workshops to analyze interactions between actors Identify target conflicts within R&D strategies Innovation concept for a sustainable technology implementation Recommendations for Politics Agriculture Technology developers and researchers Daniel KetzerJune 7th, 2016
  13. 13. ITAS, Stockholm University13 Contact: Thank you very much for your attention! More information: June 7th, 2016 Daniel Ketzer
  14. 14. ITAS, Stockholm University14 Literature I ARGE Monitoring PV-Anlagen, 2005. Photovoltaik-Freiflächenanlagen - Aktuelle Erfahrungen und Konfliktlinien. Bonn, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. ARGE Monitoring PV-Anlagen, 2007. Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV- Freiflächenanlagen, s.l.: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. Beck, M., Bopp, G., Goetzberger, A., Obergfell, T., Reise, C., & Schindele. (2012). Combining PV and Food Crops to Agrophotoltaic - Optimization of Orientation and Harvest. BMBF (2011), “National Research Strategy 2030. Our Route towards a biobased economy”. [Online] Available at: [Accessed 26 06 2014] BMELV, 2012. Greening in der EU-Agrarpolitik. [Online] Available at: [Accessed 20 02 2013]. Brudermann, T., Reinsberger, K., Orthofer, A., Kislinger, M., & Posch, A. (2013). Photovoltaics in agriculture: A case study on decision making of farmers. Energy Policy, 61, 96–103. doi:10.1016/j.enpol.2013.06.081 Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, a., & Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36(10), 2725–2732. doi:10.1016/j.renene.2011.03.005 EuPD Research (2012): Die Zukunft des PV-Freiflächensegments in Deutschland. Eine Potenzialanalyse bis 2017. Im Auftrag der Wattner AG, Köln. Wattner AG, Köln. Available online at _Studie_EuPD_Research_-_Die_Zukunft_des_PV-Freiflaechensegments_in_Deutschland_bis_2017.pdf, checked on 6/28/2014. Fachausschuss Nachhaltiges Energysystem 2050 (2010), “Eine Vision für ein nachhaltiges Energiekonzept auf Basis von Energieeffizienz und 100 % erneuerbaren Energien”, available at: (accessed 29 June 2014). FNR (2013): Cultivation of Renewable Materials in Germany. FNR Mediathek. [Online] Available at: [Accessed 26 06 2014] Daniel KetzerJune 7th, 2016
  15. 15. ITAS, Stockholm University15 Literature II Fraunhofer ISE (2014): Aktuelle Fakten zur Photovoltaik in Deutschland. Edited by Harry Wirth. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg. Freiburg. Available online at zur-photovoltaik-in-deutschland.pdf, updated on 5/28/2014, checked on 6/28/2014. Germer, J. et al., 2011. Skyfarming an ecological innovation to enhance global food security. Journal für Verbraucherschutz und Lebensmittelsicherheit, pp. 237-251. Grover, S. (2013). Solar double cropping takes off in Japan. Retrieved from responsibility/solar-double-cropping-takes-japan.html Haase, M., 2012. Development of a GIS-based spatial model for the estimation of biomass potentials in different regions of NW Europe, Karlsruhe: Institute of Technology Assessment and Systems Analysis, ITAS. Ho, M.-W. (2013). Japanese Farmers Producing Crops and Solar Energy Simultaneously. Retrieved from http://www.i- Kappler, G., 2008. Systemanalytische Untersuchung zum Aufkommen und zur Bereitstellung von energetisch nutzbarem Reststroh und Waldrestholz in Baden-Württemberg. Eine auf das Karlsruher bioliq-Konzept ausgerichtete Standortanalyse, Karlsruhe: Forschungszentrum Karlsruhe. Kazusatsumurai (2014): Solar Sharing Kazusatsumurai. Available online at, updated on 2014, checked on 6/28/2014Kyocera (2014), KYOCERA und vier andere Unternehmen schließen Rahmenvertrag für Entwicklung eines 430-Megawatt-Solarkraftwerks ab. Marcheggiani, E., Gulinck, H., & Galli, A. (2013). Detection of Fast Landscape Changes : The Case of Solar Modules on Agricultural Land General Problem Setting : Fast Changes on Arable Lands, 315–327. Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., & Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels ? Agricultural and Forest Meteorology, 177, 117–132. Movellan, J. (2013). Japan Next-Generation Farmers Cultivate Crops and Solar Energy. Renewable Energy Retrieved from solar-energy Obergfell, T., 2012. Agrovoltaik - Landwirtschaft unter Photovoltaikanlagen, Kassel: Universität Kassel, Fraunhofer ISE. Proposal for ReNA, 2012. Research Network Agrophotovoltaic ReNA - Proposal Application, s.l.: s.n. Daniel KetzerJune 7th, 2016
  16. 16. ITAS, Stockholm University16 Literature III Roland Berger Strategy Consultants and Prognos AG (2010), “Wegweiser Solarwirtschaft: PV-Roadmap 2020. Wettbewerbsfähig, klimafreundlich, dezentral - Die Solarwirtschaft als eine bedeutende Säule einer nachhaltigen Energieversorgung”, available at: (accessed 10 June 2014). Schindele, S., 2012. Agrovoltaik - Landwirtschaftliche Produktion unter PV-Freiflächenanlagen. Freiburg: Fraunhofer ISE. Schindele, S., Bopp, G., Essam, R., Goetzberger, A., Obergfell, T. and Reise, C. (2014), “Agrophotovoltaic (APV) – Agricultural Production Below Optimized Elevated Photovoltaic Systems”. Skarka, J., Rösch, C. & Posten, C., 2011. Microalgal biomass for biofuels in Europe - production potential with regard to land and CO2 availability. Posterpräsentation auf der 1st International Conference on Algal Biomass, Biofuels & Bioproducts im Westin Hotel St. Louis. St. Louis, Missouri, USA, s.n. Statistisches Bundesamt, 2012. Nachhaltige Entwicklung in Deutschland. [Online] Available at: DF_0230001.pdf?__blob=publicationFile Wacker, A. & Porsche, L., 2011. Alles im grünen Bereich? Bioenergie: Beitrag zu bundespolitischen Zielen und Anforderungen an die räumliche Entwicklung. Informationen zur Raumentwicklung Heft 5/6, pp. 265-277. Zoellner, J., Schweizer-Ries, P. and Wemheuer, C. (2008), “Public acceptance of renewable energies: Results from case studies in Germany”, Energy Policy, Vol. 36 No. 11, pp. 4136–4141. Daniel KetzerJune 7th, 2016