Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Bioinspired strategies for bone regeneration.

87 views

Published on

Plenary lecture of the XVIII B-MRS Meeting given by Prof. Maria-Pau Ginebra (UPC, Spain) on September 24, 2019 at Balneário Camboriú (Brazil).

Published in: Science
  • Be the first to comment

Bioinspired strategies for bone regeneration.

  1. 1. Bioinspired strategies for bone regeneration Maria-Pau Ginebra Biomaterials, Biomechanics and Tissue Engineering Group Dept. Materials Science and Metallurgy Universitat Politècnica de Catalunya, Barcelona, Spain Maria.pau.ginebra@upc.edu B-MRS, Balneario Camboriù, 22-26 September 2019
  2. 2. http://biomaterials.upc.edu/en Department of Materials Science and Metallurgy Biomaterials, Biomechanics and Tissue Engineering Group
  3. 3. Outline Biomimetic materials for bone regeneration Porosity: how relevant is material architecture at different lengthscales? Osteoinducction and osteogenesis Nanostructure and osteoimmunomodulation 1 2 3 4
  4. 4. 2,000,000 bone grafting procedures are performed annually worldwide to restore bone function GreenwaldAS et al. J Bone Joint SurgAm. 2001;83-A, suppl 2, part 2:98-103. Bone grafting 4
  5. 5. Bone grafting Non-union fracture Comminuted fracture Alveolar ridge defect Bone tumor/cyst Spinal disc degeneration 5
  6. 6. Bone regeneration: the problem Sedentary lifestyle Ageing population
  7. 7. 7 Bone grafting
  8. 8. Bone composition and structure M. Sadat-Shojai et al. / Acta Biomaterialia 9 (2013) 7591–7621
  9. 9. The “form” of biominerals in bone Fratzl and Weinkamer. Progress in Materials Science 52 (2007) 1263–1334 Mineral crystal shape/size: Nanocrystals: Platelets (20-60 x 10-20 x 2-5 nm3) Large specific surface area
  10. 10. H.P. Schwarcz, E.A. McNally, G.A. Botton. Journal of Structural Biology 188 (2014) 240–248 Extrafibrillar mineral The “form” of minerals in bone
  11. 11. E.A. McNally, H.P. Schwarcz, G.A. Botton, A.L. Arsenault. PLoS ONE 7(2012) 1 e29258 Extrafibrillar mineral (40 nm) (27 nm) (45 nm Ø) 200 nm The “form” of minerals in bone
  12. 12. The “form” of biominerals in bone HighHigh reactivity S. Cazalbou et al., J Mater Chem 2004, 14: 2148-53
  13. 13. Bone remodeling - 2-5% cortical bone remodeled every year - Trabecular bone 10 times faster
  14. 14. C: Bone mineral phase A,B: High-T Synthetic HA LeGeros, (1991) HIGH T SINTERED HA Stoichiometric Highly crystalline Low porosity Low SSA Non resorbable in vivo 14 High Temperature Calcium Phosphates: Sintered ceramics
  15. 15. Low-T CaPs: Calcium Phosphate CementsBiomimetic Calcum Phosphates 3Ca3(PO4)2 + H2O → Ca9(HPO4)(PO4)5(OH) α-Tricalcium phosphate Ca-deficient Hydroxyapatite (CDHA)
  16. 16. M.P. Ginebra et al., Adv Drug Del Rev (2012) 1μm 1μm Fine powder Coarse powder
  17. 17. High T CaP ceramics vs low T biomimetic CaP SSA < 5 m2/g SSA ≈ 20 m2/g SSA ≈ 40 m2/g
  18. 18. 250 µm M. Espanol et al., Acta Biomaterialia (2009), 5: 2752–2762 3 α-Ca3(PO4)2 + H2O → Ca9(HPO4) (PO4)5(OH) L/P= 0.65 L/P= 0.35 Textural properties of nanostructured CDHA Liquid/powder ratio
  19. 19. 250 µm M. Espanol et al., Acta Biomaterialia (2009), 5: 2752–2762 3 α-Ca3(PO4)2 + H2O → Ca9(HPO4) (PO4)5(OH) L/P= 0.65 L/P= 0.35 Textural properties of nanostructured CDHA
  20. 20. 250 µm M. Espanol et al., Acta Biomaterialia (2009), 5: 2752–2762 3 α-Ca3(PO4)2 + H2O → Ca9(HPO4) (PO4)5(OH) L/P= 0.65 L/P= 0.35 Textural properties of nanostructured CDHA
  21. 21. Outline Biomimetic materials for bone regeneration Porosity: how relevant is material architecture at different lengthscales? Osteoinducction and osteogenesis Nanostructure and osteoimmunomodulation 1 2 3 4
  22. 22. Acidic degradation mimicking osteoclastic environment CDHA CO3-CDHA α-Ca3(PO4)2+ H2O ↑T β-TCP SHA Osteoclast Osteoclast Hydrochloric acid - HCl In vitro acidic degradation A. Diez-Escudero et al., Acta Biomaterialia (2017) 22 Solubility SHA < CDHA < β-TCP - logKps 116.8 85.1 28.9 Anna Diez Escudero
  23. 23. Acidic degradation 15mL of 0.14M NaCl and 0.01M HCl solution Medium refresh every hour (8 hours) Weight loss Acidic degradation mimicking osteoclastic environment CDHA CO3-CDHA α-Ca3(PO4)2+ H2O ↑T β-TCP SHA Osteoclast Osteoclast Hydrochloric acid - HCl In vitro acidic degradation A. Diez-Escudero et al., Acta Biomaterialia (2017) 23
  24. 24. 500 nm β-TCP 500 nm 500 nm A. Diez-Escudero et al., Acta Biomaterialia 60 (2017):81-92 In vitro degradation 0.01M hydrochloric acid in 0.14M sodium chloride at 37 oC for 8h. * 24 In vitro acidic degradation
  25. 25. Rizzoli Orthopaedic Institute, Dr. Baldini Diez-Escudero, A. Tissue Engineering Part C: Methods, 2017, 23(2), 118–124. Ciapetti G., et al., Acta Biomaterialia, 50(2017):102–113 Anna Diez Escudero Osteoclastogenesis and osteoclastic resorption 25
  26. 26. F-HA Osteoclastogenesis and osteoclastic resorption 26
  27. 27. F-HA F-HA Osteoclastogenesis and osteoclastic resorption 27
  28. 28. Cell
  29. 29. The biomaterial as a scaffold The cells 29
  30. 30. Cell
  31. 31. The foaming agents must essentially be: • Water soluble • Present good foamability and foam stability • Biocompatible Types of foaming agents: • LMW synthetic surfactants: Non ionic surfactants approved by the FDA for parenteral use (Tween, Pluronic) • Macromolecular surfactants: Protein based foaming agents, with additional biological functionalities. • Albumen • Soy-bean derived polymers • Gelatine Montufar et el. Acta Biomater 6 (2010) 876–885 Ginebra et al. JBMRA (2007) 351-361 Perut et el. Acta Biomater 7 (2011) 1780–1787 Montufar et al. Mat Sci Eng C 31(2011):1498-1504 Self-setting Calcium phosphate foams
  32. 32. Foaming . 1 mm 1 mm (Tween 80) Montufar EB, et al. Acta Biomater 2010;6:876-85 Pastorino et al. Acta Biomater 12 (2015) 250–59 Kovtun et al. Acta Biomater 12 (2015) 242-49 Self-setting Calcium phosphate foams
  33. 33. Foaming . 1 mm 1 mm Self-setting Calcium phosphate foams
  34. 34. Controlled drug delivery from CPC David Pastorino t Dose Dose Dose t Drug delivery from non-swellable matrices Priya Khurana Foams: Enhanced fluid circulation 34
  35. 35. CaP Foams as Drug delivery systems Doxycycline Hyclate (0.88-3.52 wt%) D. Pastorino, et al. Acta Biomaterialia12 (2015) 250–259 G. Mestres et al., Mater Sci & Eng C 97(2019) 84-95 Foaming agent: Tween 80 Tetracyclines chelate Ca2+ ions 35
  36. 36. CaP Foams as Drug delivery systems D. Pastorino, et al. Acta Biomaterialia12 (2015) 250–259 36
  37. 37. Espanol, M et al. Biointerphases 7 (2012) 37 Protein retention: size exclusion chromatography 3 proteins: • Same chemical affinity, • Different sizes Montse Espanol
  38. 38. Espanol, M et al. Biointerphases 7 (2012) 37 Protein retention: size exclusion chromatography
  39. 39. Espanol, M et al. Biointerphases 7 (2012) 37 Nanostructured CDHA: protein retention
  40. 40. 3D-printing with self-setting CaP inks Yassine Maazouz Layer by layer nozzle micro-extrusion Calcium phosphate paste
  41. 41. 3D-printing with self-setting CaP inks Classic route Biomimetic route Hardening post-treatments Cesarano, J., Baer, T. A., & Calvert, P. (1997), Proc Solid Freeform Fabr Symp; Smay, J., & III, J. C. (2002), Langmuir; Michna, S., Wu, W., & Lewis, J. A. (2005), Biomaterials; Miranda, P., Saiz, E., Gryn, K., & Tomsia, A. P. (2006), Acta Biomater
  42. 42. • Injectability • Pseudoplastic behaviour • Self-supporting 3D structures 3D-printing with self-setting CaP inks 1 mm 1 mm Yassine Maazouz Maazouz et al., J. Mater. Chem. B 2 (2014), 5378 – 5386 Maazouz et al., Acta Biomaterialia 49 (2017) 563-574 Raymond et al., Acta Biomaterialia 75 (2018): 451-462
  43. 43. Outline Biomimetic materials for bone regeneration Porosity: how relevant is material architecture at different lengthscales? Osteoinducction and osteogenesis Nanostructure and osteoimmunomodulation 1 2 3 4
  44. 44. Intrinsic osteoinductive biomaterials o Tunning intrinsic physico-chemical parameters: - Chemical Composition - Macropore architecture - Microstructre Barradas AM, et al.2011 Arboleya L, et al. 2013 Janicki P, et al.2011 Engineered osteoinductive biomaterials o Addition of exogenous growth factors (BMPs) o Drawbacks: - Undesirable side effects - Variable efficacy - High costs Osteoinduction
  45. 45. SSA: 0.5-6 m2/g SSA: 20-60 m2/g Biomimetic Calcium Phosphates
  46. 46. Foaming  Interconnected concave macropores Montufar EB, et al. Acta Biomater 2010;6:876-85. 3D Inkjet printing  Interconnected prismatic macropores Maazouz Y, et al. Acta Biomaterialia 2018, in press 1 mm 1 mm 1 mm 1 mm FOAMS ROBOCASTED The scaffolds
  47. 47. Foams Macrostructure Micro/nanostru cture 3D-Printed Macrostructure 47 1 µm BCP (HA:β-TCP80:20) Micro/nanostru cture 2 µm2 µm 2 μm Macroporosity (%) 52.3 50.7 47.4 SSA (m2/g) 38.5 19.3 0.5 Macroporosity (%) 54.6 54.5 SSA (m2/g) 35.1 17.8
  48. 48.  Ectopic implantation (epaxial muscles) in Beagle dog, 6 and 12 weeks  Orthotopic Implantation (femur) in Beagle dog, 6 and 12 weeks In vivo study Albert Barba
  49. 49. • μ-CT threshold adjustment µ-CT BS-SEM µ-CT 3D quantification S. Lewin et al., Biomedical Materials (2017) In vivo study
  50. 50. Ectopic bone formation A. Barba et al., ACS Applied Materials and Interfaces 2017, 9, 41722−36) 6 weeks12 weeks 50 Osteoinduction is accelerated in biomimetic nanostructured HA with concave macroporosity
  51. 51. BCP-F : 0/6 Osteoinduction: 6 weeks BCP-F: 0/6 A. Barba et al., ACS Applied Materials and Interfaces (2017)
  52. 52. 1 mm 1 mm 50 μm200 μm 200 μm 50 μm1 mm F-Foam A. Barba et al., ACS Applied Materials and Interfaces (2017) Osteoinduction: 6 weeks
  53. 53. Osteoinduction: 12 weeks CDHA-F: 6/6 1 mm 1 mm BCP-F: 4/6 CDHA-Rob: 1/6 1 mm A. Barba et al., ACS Applied Materials and Interfaces (2017)
  54. 54. F-Foam Masson’s Trichrome Osteoinduction: 12 weeks
  55. 55. Fine-CDHACoarse-CDHA Scaffold degradation CDHA-F-Rob 55 BCP CDHA-C-Rob
  56. 56. F-Foam Orthotopic implantation Monocortical defect in the femur of Beagle dogs 12 weeks
  57. 57. Orthotopic implantation: 6 weeks C-FoamF-RobF-Foam A. Barba et al., Acta Biomaterialia 79 (2018): 135-147
  58. 58. Orthotopic implantation: 12 weeks C- Foam F-RobF- Foam A. Barba et al., Acta Biomaterialia 79 (2018): 135-147
  59. 59. Orthotopic implantation (μ-CT 3D quantification) < < A. Barba et al., Acta Biomaterialia 79 (2018): 135-147
  60. 60. Outline Biomimetic materials for bone regeneration Porosity: how relevant is material architecture at different lengthscales? Osteoinducction and osteogenesis Nanostructure and osteoimmunomodulation 1 2 3 4
  61. 61. (i) Direct trigger of osteogenic differentiation of MSCs through physicochemical properties or local accumulation/production of endogenous osteoinductive proteins such as BMP-2 (ii) Osteoimmunomodulation: indirect trigger of osteogenic differentiation through the inflammatory response or osteoclastogenesis Mechanisms of osteoinduction 61
  62. 62. Fine-CDHA rMSCs Coarse-CDHA A. Barba et al., ACS Applied Materials and Interfaces (2019) In vitro study: Effect of nanostructure on MSCs CO3-CDHA BCP 62
  63. 63. In vitro study: Effect of nanostructure on MSCs 63
  64. 64. POROSITY TOPOGRAPHY OSTEOIMMUNOMODULATIONIMMUNOMODULATION RAW 264.7 RAW 264.7- CDHA environment SaOS-2 Nanostructure and osteoimmunomodulation RAW 264.7 64 Prof. Xiao Joanna SadowskaF65 C65 4μm 4μm J. Sadowska et al., Biomaterials 181 (2018): 318-332
  65. 65. 65 Gene expression of osteogenic markers Nanostructure and osteoimmunomodulation J. Sadowska et al., Biomaterials 181 (2018): 318-332
  66. 66. 66 Protein production: Western Blot Nanostructure and osteoimmunomodulation J. Sadowska et al., Biomaterials 181 (2018): 318-332
  67. 67. 67 Nanostructure and osteoimmunomodulation J. Sadowska et al., Biomaterials 181 (2018): 318-332 F35 F65 C35 C65 control -10 0 10 20 30 40 50 ALParea/cellarea[%] F35 F65 C65C35 SaOS-2 SaOS-2 control+ control- a a b a b *& 200 µm ALP, F-actin, nuclei 67 Immunohistochemistry: ALP expression J. Sadowska et al., Biomaterials (2018)
  68. 68.  There is room for improvement of synthetic bone grafts  Nanostructure and macropore geometry are key parameters controlling osteoinduction and osteogenesis by CaP  Biomimetic processing allows pushing the material associated osteoinduction beyond the limits of microstructured CaP ceramics  Advanced technologies, like 3D printing, open up new possibilities in the design of patient-specific bone grafts Summary
  69. 69. Acknowledgements Funding bodies J. Franch, University of Barcelona M.C. Manzanares, Univ. Autònoma de Barcelona C. Persson, Uppsala University, Sweden P. Layrolle, INSERM, France C. Aparicio, Univ. Minneapolis, USA Y. Xiao, Queensland Univ of Technology,Brisbane, Australia M. Santin, Univ. Brighton, UK N. Baldini, G. Ciapetti, Rizzoli Institute, Bolonia, Italy A. Ignatius, Univ Ulm, Germany O. Hoffmann, Univ Vienna, Austria P. Boudeville, Univ. Montpellier, France Collaborations 71
  70. 70. maria.pau.ginebra@upc.edu https://biomaterials.upc.edu/ca THANK YOU FOR YOUR ATTENTION

×