Acid base balane

2,754 views

Published on

0 Comments
9 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,754
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
258
Comments
0
Likes
9
Embeds 0
No embeds

No notes for slide

Acid base balane

  1. 1. Physiology of Acid-Base Balance<br />Under the guidance of :<br />Dr. Sandeep Tandon<br /> Professor and Head of Dept. of Pedodontics Dr. Ambika S. Rathore Dr. Rinku Mathur Dr .Shantanu Jain<br /> Dr. Tripti Sharma Rai<br />
  2. 2. 2<br />CONTENT:<br /><ul><li>Introduction
  3. 3. Acid-Base Balance
  4. 4. ph Scale
  5. 5. Acidosis and Alkalosis
  6. 6. Compensatory Mechanisms
  7. 7. Disturbance in acid-base balance
  8. 8. Anion Gap
  9. 9. Factors affecting acid-base balance in children
  10. 10. Infantile metabolic acidosis</li></li></ul><li>3<br />Introduction<br /><ul><li>Acid-base homeostasis is the part of human homeostasis concerning the proper balance between acids and bases, in other words, the pH.
  11. 11. Chemical and physiologicprocesses responsible for the maintenance of the acidity of body fluids.</li></li></ul><li>Acid Base Homeostasis<br /><ul><li>Chemical processes:
  12. 12. extracellular
  13. 13. intracellularbuffers
  14. 14. The physiologic processes: the excretion of volatile acids by the lungsand fixed acids by the kidneys</li></ul>4<br />
  15. 15. 5<br />ACID-BASE BALANCE<br />
  16. 16. 6<br />ACIDS<br />OH-<br />OH-<br />OH-<br />OH-<br /><ul><li>Acids can be defined as a proton (H+) donor
  17. 17. Hydrogen containing substances which dissociate in solution to release H+</li></ul>H+<br />H+<br />H+<br />H+<br />
  18. 18. 7<br />ACIDS<br />Physiologically important acids include:<br />Carbonic acid (H2CO3)<br />Phosphoric acid (H3PO4)<br />Pyruvic acid (C3H4O3)<br />Lactic acid (C3H6O3)<br />Phosphoric acid<br />Lactic acid<br />Pyruvic acid<br />Carbonic acid<br />
  19. 19. 8<br />BASES<br />
  20. 20. 9<br />OH-<br />OH-<br />OH-<br />OH-<br />BASES<br /><ul><li> Bases can be defined as:
  21. 21. A proton (H+) acceptor
  22. 22. Molecules capable of accepting a hydrogen ion (OH-)</li></ul>H+<br />H+<br />H+<br />H+<br />
  23. 23. 10<br />BASES<br />Physiologically important bases include:<br />Bicarbonate (HCO3- )<br />Biphosphate (HPO4-2 )<br />Biphosphate<br />Bicarbonate<br />
  24. 24. 11<br />pH SCALE<br />
  25. 25. 12<br />pH SCALE<br />pH refers to Potential Hydrogen<br />Expresses hydrogen ion concentration in water solutions.<br />Water ionizes to a limited extent to form equal amounts of H+ ions and OH- ions<br /> H2OH+ + OH-<br />H+ion is an acid<br />OH-ion is a base<br />
  26. 26. 13<br />H+<br />H+<br />OH-<br />H+<br />OH-<br />OH-<br />H+<br />H+<br />OH-<br />H+<br />H+<br />H+<br />H+<br />OH-<br />H+<br />OH-<br />OH-<br />H+<br />OH-<br />H+<br />OH-<br />H+<br />OH-<br />OH-<br />H+<br />OH-<br />H+<br />OH-<br />OH-<br />pH SCALE<br />Pure water is Neutral<br /><ul><li>( H+ = OH-)</li></ul> pH = 7<br />Acid<br /><ul><li>( H+ > OH- ) </li></ul>pH < 7<br />Base<br /><ul><li>( H+< OH-)</li></ul> pH > 7<br />Normal blood pH is 7.35 - 7.45<br />pH range compatible with life is 6.8 - 8.0<br />ACIDS, BASES OR NEUTRAL???<br />3<br />1<br />2<br />
  27. 27. 14<br />pH SCALE<br />Normal hydrogen ion concentration in ECF= 38-42 nM/L.<br />Ph scale- simplify the mathematical handling of large numbers.<br /><ul><li>Unit changes in pH represent a tenfold change in H+ concentrations</li></ul>pH = log 1 / H+ concentration<br />
  28. 28. 15<br />pH SCALE<br />Ph of the ECF: 7.40<br />NORMAL<br />ACIDOSIS<br />ALKALOSIS<br />DEATH<br />DEATH<br />7.3<br />7.5<br />7.4<br />6.8<br />8.0<br />Venous Blood<br />Arterial Blood<br />
  29. 29. 16<br />Determination of Acid Base Status<br /><ul><li>pH = pK + log HCO3</li></ul> CO2<br />Henderson-Hasselbalch equation<br /> Normal acid-base ratio= 1:20<br />ph of arterial blood= indirect method<br />
  30. 30. 17<br />ACIDOSIS / ALKALOSIS<br />
  31. 31. 18<br />ACIDOSIS / ALKALOSIS<br />Acidosis<br /><ul><li>A condition in which the blood has too much acid (or too little base), frequently resulting in a decrease in blood pH</li></ul>Alkalosis<br /><ul><li>A condition in which the blood has too much base (or too little acid), occasionally resulting in an increase in blood pH</li></li></ul><li>19<br />Acidosis / Alkalosis<br /><ul><li>Acidosis</li></ul>H+<br />OH-<br /><ul><li>Alkalosis</li></ul>H+<br />OH-<br />
  32. 32. 20<br />ACIDOSIS / ALKALOSIS<br />pH changes have dramatic effects on normal cell function<br />1)Changes in excitability of nerve and muscle cells<br />2) Influences enzyme activity<br />3) Influences K+ levels<br />
  33. 33. 21<br />Changes in Cell Excitability<br /><ul><li>pH decrease (more acidic) depresses the central nervous system
  34. 34. Can lead to loss of consciousness
  35. 35. pH increase (more basic) can cause over-excitability
  36. 36. Tingling sensations, nervousness, muscle twitches</li></li></ul><li>22<br />Influences on Enzyme Activity<br /><ul><li>pH increases or decreases can alter the shape of the enzyme rendering it non-functional.
  37. 37. Changes in enzyme structure can result in accelerated or depressed metabolic actions within the cell.</li></li></ul><li>23<br />Influences On K+ Levels<br /><ul><li>When reabsorbing Na+ from the filtrate of the renal tubules K+ or H+ is secreted (exchanged).
  38. 38. Normally K+issecreted in muchgreater amountsthan H+</li></ul>K+<br />K+<br />K+<br />K+<br />K+<br />K+<br />Na+<br />Na+<br />Na+<br />Na+<br />Na+<br />Na+<br />H+<br />K+<br />
  39. 39. 24<br />Influences On K+ Levels<br /><ul><li>If H+ concentrations are high (acidosis) than H+ is secreted in greater amounts.
  40. 40. This leaves less K+ than usual excreted.
  41. 41. The resultant K+ retention can affect cardiac function and other systems.</li></ul>K+<br />K+<br />K+<br />K+<br />K+<br />K+<br />K+<br />K+<br />Na+<br />Na+<br />Na+<br />Na+<br />Na+<br />Na+<br />H+<br />H+<br />H+<br />H+<br />H+<br />H+<br />H+<br />
  42. 42. 25<br />SOURCE OF HYDROGEN ION<br />CO2 + H2O H2CO3 H+ + HCO3-<br />H+<br /> H2CO3<br />HCO3-<br />
  43. 43. 26<br />Regulation of Acid Base Balance<br />Two types of acids are produced in the body:<br /><ul><li>Volatile acids :CO2 produced </li></ul> during the metabolism of <br /> carbohydrates and lipids<br /><ul><li>Non-volatile acids:metabolism of</li></ul> protein e.g. sulphuric acids<br />
  44. 44. Compensatory mechanisms<br />1)Chemical Buffers<br /><ul><li> React very rapidly(less than a second)</li></ul>2)Respiratory Regulation<br /><ul><li> Reacts rapidly (seconds to minutes)</li></ul>3)Renal Regulation<br /><ul><li> Reacts slowly (minutes to hours)</li></ul>4) Intracellular Shifts of Ions<br />27<br />
  45. 45. Acid-base buffer system<br /><ul><li>Maintains the pH by binding with free hydrogen ions.
  46. 46. Combination of weak acid and a base (unprotonated compound).
  47. 47. Three major chemical buffer systems
  48. 48. Bicarbonate system
  49. 49. Phosphate system
  50. 50. Protein system</li></ul>28<br />
  51. 51. 29<br />BICARBONATE BUFFER SYSTEM<br />This system is most important because the concentration of both components can be regulated:<br /><ul><li> Carbonic acid by the respiratory system
  52. 52. Bicarbonate by the renal system</li></li></ul><li>30<br />H+<br /><ul><li>H2CO3H+ + HCO3-
  53. 53. Hydrogen ions generated by metabolism or by ingestion react with bicarbonate base to form more carbonic acid</li></ul>H2CO3<br />HCO3-<br />
  54. 54. 31<br />BICARBONATE BUFFER SYSTEM<br />H+<br /><ul><li>Equilibrium shifts toward the formation of acid
  55. 55. Hydrogen ions that are lost (vomiting) causes carbonic acid to dissociate yielding replacement H+ and bicarbonate</li></ul>H2CO3<br />HCO3-<br />
  56. 56. 32<br />BICARBONATE BUFFER SYSTEM<br />H+<br />HCO3-<br />H2CO3<br />H2O<br />CO2<br />+<br />+<br />Addition of lactic acid<br />Exercise<br />Loss of HCl<br />Vomiting<br />
  57. 57. 33<br />PHOSPHATE BUFFER SYSTEM<br />Na2HPO4 + H+ NaH2PO4+ Na+<br /><ul><li>Most important in the intracellular system</li></ul>Na2HPO4<br />+<br />H+<br />+<br />Na+<br />NaH2PO4<br />
  58. 58. 34<br />PHOSPHATE BUFFER SYSTEM<br /><ul><li>Regulates pH within the cells and the urine
  59. 59. Phosphate concentrations are higher intracellular and within the kidney tubules.
  60. 60. More phosphate ions </li></ul>are found in tubular fluids<br /><ul><li>More powerful than</li></ul>bicarbonate buffer system<br />HPO4-2<br />
  61. 61. 35<br />PROTEIN BUFFER SYSTEM<br />Proteins are excellent buffers because they contain both acid and base groups that can give up or take up H+<br />Proteins are extremely abundant in the cell<br />The more limited number of proteins in the plasma reinforce the bicarbonate system in the ECF<br />
  62. 62. 36<br /><ul><li>Hemoglobin buffers H+ from metabolically produced CO2 in the plasma only
  63. 63. As hemoglobin releases O2 it gains a great affinity for H+</li></ul>H+<br />O2<br />O2<br />Hb<br />O2<br />O2<br />
  64. 64. 37<br />H+ generated at the tissue level from the dissociation of H2CO3 produced by the addition of CO2<br />Bound H+ to Hb(Hemoglobin) does not contribute to the acidity of blood<br />H+<br />O2<br />O2<br />Hb<br />O2<br />O2<br />
  65. 65. 38<br />As H+Hb picks up O2 from the lungs the Hb which has a higher affinity for O2 releases H+ and picks up O2<br />Liberated H+ from H2O combines with HCO3-<br />HCO3-H2CO3CO2(exhaled)<br />O2<br />O2<br />H+<br />Hb<br />O2<br />O2<br />
  66. 66. 39<br />RESPIRATORY CENTRE<br />Pons<br />Respiratory centers<br />Medulla oblongata<br />
  67. 67. 40<br />CHEMOSENSITIVE AREAS<br /><ul><li>Chemo sensitive areas of the respiratory center are able to detect blood concentration levels of CO2 and H+
  68. 68. Increases in CO2 and H+ stimulate the respiratory center
  69. 69. The effect is to raiserespiration rates
  70. 70. But the effectdiminishes in1 - 2 minutes</li></ul>CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />
  71. 71. 41<br />cell production of CO2 increases<br />CO2 + H2O H2CO3<br />H2CO3 H+ + HCO3-<br />H+ acidosis; pH drops<br />H+ stimulates respiratory center in medulla oblongata<br />rate and depth of breathing increase<br />CO2 eliminated in lungs<br />pH rises toward normal<br />RESPIRATORY CONTROL OF pH<br />
  72. 72. 42<br />RENAL RESPONSE<br />The kidney compensates for Acid - Base imbalance within 24 hours and is responsible for long term control<br />The kidney in response:<br />To Acidosis<br />Retains bicarbonate ions and eliminates hydrogen ions<br />To Alkalosis<br />Eliminates bicarbonate ions and retains hydrogen ions<br />
  73. 73. 43<br />H+<br />K+<br />cell<br />H+<br />K+<br />cell<br />ELECTROLYTE SHIFTS<br />Acidosis<br />Compensatory Response<br />Result<br />- H+ buffered intracellularly<br />- Hyperkalemia<br />-Diabetic ketoacidosis<br />Alkalosis<br />Result<br />Compensatory Response<br />- Tendency to correct alkalosis<br />- Hypo kalemia<br />
  74. 74. 44<br />DISTURBANCE OF ACID BASE BALANCE<br /><ul><li>Four general categories, depending on the source and direction of the abnormal change in H+ concentrations:
  75. 75. Respiratory Acidosis
  76. 76. Respiratory Alkalosis
  77. 77. Metabolic Acidosis
  78. 78. Metabolic Alkalosis</li></li></ul><li>45<br />RESPIRATORY ACIDOSIS<br />
  79. 79. 46<br />RESPIRATORY ACIDOSIS<br />Caused by hyperkapnia due to hypoventilation<br />Characterized by a pH decrease and an increase in CO2<br />pH<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />pH <br />CO2<br />CO2<br />
  80. 80. 47<br />RESPIRATORY ACIDOSIS<br /><ul><li>Respiratory acidosis develops when the lungs don't expel CO2 adequately
  81. 81. Emphysema, chronic bronchitis, severe pneumonia, pulmonary edema, and asthma</li></li></ul><li>48<br />RESPIRATORY ACIDOSIS<br /><ul><li>Decreased CO2 removal can be the result of:</li></ul>Obstruction of air passages<br />Decreased respiration (depression of respiratory centers)<br />Decreased gas exchange between pulmonary capillaries and air sacs of lungs<br />Collapse of lung<br />
  82. 82. 49<br /> 4) Collapse of lung<br /><ul><li>Compression injury, open thoracic wound</li></ul>Left lung collapsed<br />
  83. 83. 50<br />RESPIRATORY ACIDOSIS<br />CO2<br />CO2<br />HCO3-<br />CO2<br />CO2<br />H2CO3<br />:<br />2<br />20<br /><ul><li> breathing is suppressed holding CO2 in body
  84. 84. pH = 7.1</li></li></ul><li>51<br />H2CO3<br />HCO3-<br />HCO3-<br />HCO3-<br />H2CO3<br />+<br />H+<br />:<br />2<br />30<br />BODY’S COMPENSATION<br /><ul><li> kidneys conserve HCO3- ions to restore the normal 40:2 ratio (20:1)
  85. 85. kidneys eliminate H+ ion in acidic urine</li></ul>acidic urine<br />
  86. 86. 52<br />Lactate<br />LIVER<br />H2CO3<br />HCO3-<br />Lactate<br />HCO3-<br />:<br />2<br />40<br /><ul><li> therapy required to restore metabolic balance
  87. 87. lactate solution used in therapy is converted to bicarbonate ions in the liver</li></li></ul><li>53<br />H2CO3<br />HCO3-<br />HCO3-<br />H2CO3<br />:<br />20<br />RESPIRATORY ALKALOSIS<br /><ul><li>Normal 20:1 ratio is increased
  88. 88. pH of blood is above 7.4</li></ul>7.4<br />7.4<br />=<br />=<br />:<br />0.5<br />20<br />
  89. 89. 54<br />RESPIRATORY ALKALOSIS<br /><ul><li>Cause is Hyperventilation
  90. 90. Leads to eliminating excessive amounts of CO2
  91. 91. Increased loss of CO2 from the lungs at a rate faster than it is produced
  92. 92. Decrease in H+</li></ul>CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />CO2<br />
  93. 93. 55<br />RESPIRATORY ALKALOSIS<br />Can be the result of:<br />1) Anxiety, emotional disturbances<br />2) Respiratory center lesions<br />3) Fever<br />4) Salicylate poisoning (overdose)<br />5) Assisted respiration<br />6) High altitude (low PO2)<br />
  94. 94. 56<br /><ul><li> Kidneys compensate by:
  95. 95. Retaining hydrogen ions
  96. 96. Increasing bicarbonate excretion</li></ul>HCO3-<br />HCO3-<br />H+<br />H+<br />HCO3-<br />HCO3-<br />H+<br />H+<br />H+<br />HCO3-<br />H+<br />HCO3-<br />HCO3-<br />H+<br />H+<br />HCO3-<br />HCO3-<br />H+<br />H+<br />HCO3-<br />H+<br />
  97. 97. 57<br />RESPIRATORY ALKALOSIS<br />Cl-<br />H2CO3<br />HCO3-<br />Chloride containing solution<br />:<br />0.5<br />10<br /><ul><li>therapy required to restore metabolic</li></ul> balance<br /><ul><li>HCO3- ions replaced by Cl- ions</li></li></ul><li>58<br />HCO3-<br />H2CO3<br />HCO3-<br />=<br />7.4<br />=<br />7.4<br />H2CO3<br />:<br />:<br />1<br />20<br />1<br />10<br />METABOLIC ACIDOSIS<br /><ul><li>Occurs when there is a decrease in the normal 20:1 ratio
  98. 98. Decrease in blood pH and bicarbonate level
  99. 99. Excessive H+ or decreased HCO3-</li></li></ul><li>59<br />METABOLIC ACIDOSIS<br /><ul><li>Acidosis results from excessive loss of HCO3- rich fluids from the body or from an accumulation of acids.
  100. 100. Accumulation of non-carbonic plasma acids uses HCO3- as a buffer for the additional H+ thus reducing HCO3- levels</li></ul>Muscle Cell<br />Lactic Acid<br />HCO3-<br />
  101. 101. 60<br />METABOLIC ACIDOSIS<br /><ul><li> Metabolic acidosis is always characterized by a reduction in plasma HCO3- while CO2 remains normal</li></ul>Plasma Levels<br />HCO3-<br />CO2<br />
  102. 102. 61<br />METABOLIC ACIDOSIS<br /><ul><li>The causes of metabolic acidosis can be grouped into five major categories;</li></ul>1) Ingesting an acid or a substance that is metabolized to acid<br />2) Abnormal Metabolism<br />3) Kidney Insufficiencies<br />4) Strenuous Exercise<br />5) Severe Diarrhea<br />
  103. 103. 62<br />METABOLIC ACIDOSIS<br /><ul><li> Treating the underlying cause of metabolic acidosis is the usual course of action
  104. 104. Control diabetes with insulin or treat poisoning by removing the toxic substancefrom the blood
  105. 105. Occasionallydialysis is neededto treat severeoverdoses andpoisonings</li></li></ul><li>63<br />METABOLIC ACIDOSIS<br /><ul><li> Metabolic acidosis may also be treated directly
  106. 106. If the acidosis is mild, intravenous fluids and treatment for the underlying disorder may be all that's needed</li></li></ul><li>64<br />METABOLIC ACIDOSIS<br /><ul><li> When acidosis is severe, bicarbonate may be given intravenously
  107. 107. Bicarbonate provides only temporary relief.</li></li></ul><li>65<br />METABOLIC ALKALOSIS<br /><ul><li>Elevation of pH due to an increased 20:1 ratio
  108. 108. May be caused by: </li></ul>An increase of bicarbonate <br />A decrease in hydrogen ions<br /><ul><li>Imbalance again cannot be due to CO2
  109. 109. Increase in pH which has a non-respiratory origin</li></ul>7.4<br />
  110. 110. 66<br />METABOLIC ALKALOSIS<br /><ul><li> A reduction in H+ in the case of metabolic alkalosis can be caused by a deficiency of non-carbonic acids
  111. 111. This is associated with an increase in HCO3-</li></li></ul><li>67<br />METABOLIC ALKALOSIS<br />Can be the result of:<br />Ingestion of Alkaline Substances<br />2. Vomiting ( loss of HCl )<br />
  112. 112. 68<br />METABOLIC ALKALOSIS<br />Gastric juices contain large amounts of HCl<br />During HCl secretion, bicarbonate is added to the plasma<br />H+<br />K+<br />HCl<br />HCO3-<br />Cl-<br />
  113. 113. 69<br />METABOLIC ALKALOSIS<br />The bicarbonate is neutralized as HCl is reabsorbed by the plasma from the digestive tract<br />K+<br />HCl<br />H+<br />Cl-<br />H2CO3<br />HCO3-<br />
  114. 114. 70<br /><ul><li>During vomiting H+ is lost as HCl and the bicarbonate is not neutralized in the plasma
  115. 115. Loss of HCl increases the plasma bicarbonate and thus results in an increase in pH of the blood</li></ul>K+<br />HCl<br />Bicarbonate not neutralized<br />HCO3-<br />
  116. 116. 71<br />H2CO3<br />HCO3-<br />HCO3- + H+<br />H+<br />+<br />CO2<br />+ H2O<br />HCO3-<br />:<br />1.25<br />30<br />Alkaline urine<br />BODY’S COMPENSATION<br /><ul><li> breathing suppressed to hold CO2
  117. 117. kidneys conserve H+ ions and eliminate</li></ul> HCO3- in alkaline urine<br />
  118. 118. 72<br />METABOLIC ALKALOSIS<br />Cl-<br />H2CO3<br />HCO3-<br />Chloride containing solution<br />:<br />1.25<br />25<br /><ul><li>Therapy required to restore metabolic</li></ul>balance<br /><ul><li>HCO3- ions replaced by Cl- ions</li></li></ul><li>73<br />ACID – BASE DISORDERS<br />
  119. 119. CLINICAL EVALUATION OF DISTURBANCES IN ACID BASE STATUS<br />74<br />
  120. 120. ANION GAP<br />The term anion gap (AG) represents the concentration of all the unmeasured anions in the plasma.<br />The negatively charged proteins account for about 10% of plasma anions. <br />Reference range is 8 to 16 mmol/l.<br />75<br />Anion gap = [Na+] - [Cl-] - [HCO3-]<br />AG = [Na+] + [K+] - [Cl-] - [HCO3-]<br />
  121. 121. Major Clinical Uses of the Anion Gap <br /><ul><li>To signal the presence of a metabolic acidosis and confirm other findings.
  122. 122. Help differentiate between causes of a metabolic acidosis.</li></ul>ORGANIC INORGANIC<br /><ul><li>To assist in assessing the biochemical severity of the acidosis and follow the response to treatment .</li></ul>76<br />
  123. 123. General Factors affecting Acid-Base Balance in Infants<br /><ul><li>Low Bicarbonate depends</li></ul> on Gestational Age<br /><ul><li>lower renal threshold
  124. 124. lower capacity to reabsorb HCO3-
  125. 125. Very low birth weight babies: bicarbonate levels of 12-16 mmoles/l
  126. 126. Term babies : levels of 20-22 mmol/l.</li></ul>77<br />
  127. 127. 78<br />The rate of metabolism in infants is twice as great in relation to body mass as in adults<br />Twice as much acid is formed which leads to a tendency toward acidosis<br />Functional development of kidneys is not complete until the end of the first month<br />Renal regulation of acid base may not be optimal.<br />
  128. 128. Low Reserve to excrete an Acid Load<br /><ul><li>Term infants, acid excretion is working near maximum capacity and there is little reserve to deal with acidosis.
  129. 129. Preterm babies less capacity than a term neonate to buffer an acid load. </li></ul>79<br />
  130. 130. 80<br />Other Factors<br />Growth results in deposition of base in new bone as the calcium salts in bone are alkaline salts.<br />On a weight basis, fixed acid production is higher than in adults.<br />Neonates and children < 12 months<br />fixed acid production is 2 to 3 mmol/kg/day).<br />
  131. 131. Infantile Metabolic Acidosis <br /><ul><li>Different inborn errors of metabolism cause a metabolic acidosis:
  132. 132. organic acidosis (enzyme defect resulting in accumulation of acidic metabolic intermediates)
  133. 133. lactic acidosis
  134. 134. hyperchloraemic acidosis
  135. 135. Feeding difficulties often in association with tachypnoea</li></ul>81<br />
  136. 136. Lactic acidosis : enzyme defects and present during childhood.<br /><ul><li>pyruvatecarboxylase deficiency
  137. 137. fructose-1,6-diphosphatase deficiency
  138. 138. pyruvatedehydrogenase deficiency. </li></ul>not an isolated finding as these children have serious dysfunctions of organ systemsesp. affecting brain, liver and muscle.<br />82<br />
  139. 139. Other Acid-Base Disorders in Children<br />Insulin dependent diabetes mellitus usually presents during childhood or adolesence. <br />Poisoning in children may cause an acid-base disorder <br />83<br />
  140. 140. REFERENCES<br />Fundamentals of physiology: a human perspective:Lauralee Sherwood; Fluid and acid base balance; page:453-61<br />Essentials of medical physiology: <br /> K Sembulingam; Acid base balance:36-47<br />Ganong’s Review of Medical Physiology: Renal physiology: 679-682<br />84<br />
  141. 141. THANK YOU<br />Presented by:<br /> Dr. Ruby Kharkwal<br /> 1st year postgraduate student<br /> Department of Pedodontics<br />85<br />

×