Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
We at Revolution Analytics are often asked “What is the best way to learn R?” While acknowledging that there may be as many effective learning styles as there are people we have identified three factors that greatly facilitate learning R. For a quick start:
- Find a way of orienting yourself in the open source R world
- Have a definite application area in mind
- Set an initial goal of doing something useful and then build on it
In this webinar, we focus on data mining as the application area and show how anyone with just a basic knowledge of elementary data mining techniques can become immediately productive in R. We will:
- Provide an orientation to R’s data mining resources
- Show how to use the "point and click" open source data mining GUI, rattle, to perform the basic data mining functions of exploring and visualizing data, building classification models on training data sets, and using these models to classify new data.
- Show the simple R commands to accomplish these same tasks without the GUI
- Demonstrate how to build on these fundamental skills to gain further competence in R
- Move away from using small test data sets and show with the same level of skill one could analyze some fairly large data sets with RevoScaleR
Data scientists and analysts using other statistical software as well as students who are new to data mining should come away with a plan for getting started with R.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.