Upcoming SlideShare
×

# Unit 9 review (6th grade)

3,735 views

Published on

Published in: Education, Technology
2 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
3,735
On SlideShare
0
From Embeds
0
Number of Embeds
66
Actions
Shares
0
64
0
Likes
2
Embeds 0
No embeds

No notes for slide

### Unit 9 review (6th grade)

1. 1. Unit 9 Review 6 th Grade
2. 2. Simplify expressions and equations with parenthesis. <ul><li>2(4x+5x)+x=38 </li></ul><ul><li>X=5 </li></ul><ul><li>X=19 </li></ul><ul><li>X=2 </li></ul><ul><li>I don’t know how to do this </li></ul>
4. 4. Simplify expressions and equations with parenthesis. <ul><li>Use the distributive property / order of operations to get rid of parenthesis </li></ul><ul><li>Use opposites to solve for x </li></ul>2(4x+5x)+x=38 38 = (2 * 4x) + (2 * 5x) + x 38 = 8x + 10x + x 38 = 19x 38 / 19 = 19x / 19 2 = x next
6. 6. (3+4)y + 9 = <ul><li>3y + 4y + 9 </li></ul><ul><li>7y +9 </li></ul>Remember that the distributive property distributes the operation to everything that is inside the parenthesis! Click here for the next question!
7. 7. Apply the Distributive Property <ul><li>2y(3+2y)= </li></ul><ul><li>10y </li></ul><ul><li>6y + (2y) 2 </li></ul><ul><li>5y +4y 2 </li></ul><ul><li>I don’t know how to do this </li></ul>
9. 9. Apply the Distributive Property <ul><li>Look up the distributive law by clicking here </li></ul><ul><li>Read the lesson on the distributive property by clicking here </li></ul><ul><li>Try some problems by clicking here </li></ul>Click here for the next question!
10. 10. Combine Like Terms to Simplify Expressions and Equations <ul><li>2y + 6 + 4y – 8 -9y + (-3)= </li></ul><ul><li>3y -5 </li></ul><ul><li>6y – 9y -5 </li></ul><ul><li>-3y -5 </li></ul><ul><li>I don’t know how to do this </li></ul>
12. 12. Combine Like Terms to Simplify Expressions and Equations <ul><li>Put the things that are alike together! </li></ul><ul><ul><li>2y + 6 + 4y -8 -9y + (-3) </li></ul></ul><ul><ul><li>The variable terms 2y, 4y, and 9y are one set of terms </li></ul></ul><ul><ul><li>The numbers 6, 8, and -3 are a second set of like terms </li></ul></ul><ul><ul><li>Each set of like terms is combined separately </li></ul></ul><ul><ul><li>The variable terms are combined into one single term </li></ul></ul><ul><ul><li>The number terms are combined into a second single term </li></ul></ul>2y + 4y – 9y = -3y 6 -3 -8 = -5 So, 2y + 6 + 4y -8 -9y + (-3) = -3y - 5 Try one
13. 13. 8b + 9 + 4b – 3b + (-2b) – (-5)= Check your answer
14. 14. 8b + 9 + 4b – 3b + (-2b) – (-5)= <ul><li>Like terms are: 8b, 4b, -3b, -2b </li></ul><ul><li>and: 9, -5 </li></ul><ul><li>8b + 4b – 3b + (-2b) = 7b </li></ul><ul><li>9 – (-5) = 14 </li></ul><ul><li>So, 8b + 9 + 4b – 3b + (-2b) – (-5)= 7b +14 </li></ul>Click here for more on combining like terms. Practice combining like terms by clicking here. Click here for the next question!
15. 15. Solve Equations <ul><li>8y+(-5) = 5y +13 </li></ul><ul><li>Y=6 </li></ul><ul><li>Y=-6 </li></ul><ul><li>Y=18 </li></ul><ul><li>I don’t know how to do this. </li></ul>
17. 17. Solve Equations <ul><li>Keep both sides of the equation balanced (be fair) </li></ul><ul><li>Get the variable by itself </li></ul><ul><li>Follow order of operations (PEMDAS) </li></ul><ul><li>Use opposite operations to isolate the variable </li></ul>8y+(-5) = 5y +13 -5y -5y 3y+(-5) = 13 -(-5) -(-5) 3y = 18 ÷3 ÷3 Y=6 Subtract 5y from both sides to combine like terms Subtract -5 from both sides Divide both sides by 3 to isolate the variable Try one
18. 18. 4r + 37 = 100 - 5r Check your answer
20. 20. Write and identify equivalent expressions and equivalent equations. <ul><li>5(y-b) + 3b – 6y + 4(6 + b)= </li></ul><ul><li>Y + 2b + 24 </li></ul><ul><li>-y + 5b – 24 </li></ul><ul><li>-y + 2b + 24 </li></ul><ul><li>I don’t know how to do this. </li></ul>
22. 22. Finding Equivalent Expressions and Equations <ul><li>Think of it like a balance </li></ul><ul><li>If you get stuck, plug in a number for the variable </li></ul><ul><li>Make both sides equal </li></ul><ul><li>Combine like terms </li></ul>next
23. 23. Steps to find equivalence next Plug in a value to check (2 = k) (12 – 3 + 5k)6 + 4k – 2(k + 5)=44 + 32k (12-3+10)6 + 8 -2(2+5) = 44 + 64 19*6 + 8 -2*7 = 44 + 64 114 + 8 -14 = 44 + 64 108 = 108 Combine like terms 72 – 18 – 10 = 44 30k + 4k – 2k = 32k Use the distributive property (12 – 3 + 5k)6 + 4k – 2(k + 5) 72 – 18 + 30k + 4k -2k - 10
24. 24. Practice <ul><li>Balance the pan balance </li></ul>Decide if the following are equivalent: 3(4 + 5s) – 12 + (-3s) = 12s yes 2(b + 3) + 4 – (-3b) = -b + 7 no 5(2c + 4) – 3c + (-2)(c+2) = 5c +16 yes Click here for the next question!
25. 25. Write and solve equations that represent problem situations <ul><li>When Marlene removed her dinner from the freezer, the temperature was -10 °C. She heated the dinner in the oven, and then put it on the table. It cooled to room temperature, 23°C while she was talking on the phone. How many degrees warmer was the dinner at room temperature than when it was removed from the freezer? </li></ul><ul><li>10 + x = 23 </li></ul><ul><li>23 – 10 =x </li></ul><ul><li>-10 + x = 23 </li></ul><ul><li>I don’t know how to do this. </li></ul>
27. 27. Write and solve equations that represent problem situations <ul><li>Identify the important information </li></ul><ul><li>Assign a variable to the information you do not know </li></ul><ul><li>Pay attention to words that would indicate an operation- more than, in addition, less than, etc. </li></ul><ul><li>Write a number sentence, solve, and check </li></ul>next
28. 28. Jenny bought 7 t-shirts, one for each of her seven brothers, for \$9.95 each. The cashier charged her an additional \$13.07 in sales tax. She left the store with a measly \$7.28. How much money did Jenny start with? Try one Click here for the next question! M – 7(\$9.95) -\$13.07= \$7.28 Write a number sentence How much money did she start with = m Assign a variable 7 t-shirts, \$9.95 ea Additional \$13.07 Left with \$7.28 Identify important information
29. 29. Use Formulas to Solve Problems 15 in 8 in c a 2 + b 2 = c 2 <ul><li> c = √8 + 15 </li></ul><ul><li> c = √64 + √225 </li></ul><ul><li>c = 64 + 225 </li></ul><ul><li> I don’t know how to do this </li></ul>
30. 30. Great Work! Continue to do math things on portaportal.com
31. 31. To use formulas <ul><li>Substitute the quantities you know </li></ul><ul><li>Solve for the left over variable </li></ul>V = l x w x h Vol = 60 5 6 What is the height? 60 = 5 x 6 x h h = 2 next