Concurrent Analysis Corporation
Company Profile <ul><li>Established in 1991. </li></ul><ul><li>CAEFEM was introduced in 1992. </li></ul><ul><li>Interfaced...
Overview <ul><li>CAEFEM is a finite element analysis software developed from scratch on Windows platform. </li></ul><ul><l...
Object oriented design <ul><li>State of the art event driven object oriented architecture </li></ul><ul><li>Well documente...
Huge model support <ul><li>Handles models with millions of nodes. </li></ul><ul><li>64 bit file addressing to handle huge ...
CAEFEM Modeler <ul><li>User   Interface </li></ul><ul><ul><li>Fully modeless and event driven operation. </li></ul></ul><u...
CAEFEM Modeler <ul><li>User   Interface </li></ul><ul><ul><li>Multiple layers with on/off and color trigger. </li></ul></u...
CAEFEM Modeler <ul><li>Graphics </li></ul><ul><ul><li>OpenGL graphics </li></ul></ul><ul><ul><li>3-D dynamic, pan, zoom an...
CAEFEM Modeler <ul><li>Local languages support </li></ul><ul><ul><li>Very easy for language localization. </li></ul></ul><...
CAEFEM Modeler <ul><li>Interfaces </li></ul><ul><ul><li>Interfaces to major CAD formats like Parasolid and ACIS </li></ul>...
CAEFEM Modeler <ul><li>Units of measurement </li></ul><ul><ul><li>User can import files with different units of measuremen...
CAEFEM Modeler <ul><li>Mesh generation </li></ul><ul><ul><li>Automatic mesh generation of tetrahedron, shell elements etc....
CAEFEM Modeler <ul><li>Miscellaneous </li></ul><ul><ul><li>A comprehensive list of properties and materials </li></ul></ul...
CAEFEM Modeler <ul><li>Post processing </li></ul><ul><ul><li>Deformed plots </li></ul></ul><ul><ul><li>Filled color contou...
CAEFEM Modeler <ul><li>Customization </li></ul><ul><ul><li>User preference file stores colors, graphics preferences and un...
CAEFEM  Analyses Types <ul><li>Linear static </li></ul><ul><li>Natural frequency and Mode shapes </li></ul><ul><li>Linear ...
CAEFEM  Element Library <ul><li>Rod and Cable </li></ul><ul><li>Bar and Beam </li></ul><ul><li>Tube </li></ul><ul><li>Gap ...
CAEFEM  Element Library <ul><li>Truss elements </li></ul><ul><ul><li>Two node elements supports only tension/compression ....
CAEFEM  Element Library <ul><li>Spring damper elements </li></ul><ul><ul><li>Axial or rotational springs </li></ul></ul><u...
CAEFEM  Element Library <ul><li>Beam and bar elements </li></ul><ul><ul><li>Both translational and rotational degrees of f...
CAEFEM  Element Library <ul><li>Tube elements </li></ul><ul><ul><li>Similar to bar elements with circular cross section </...
CAEFEM  Element Library <ul><li>Plane strain elements </li></ul><ul><ul><li>Similar to plane stress elements except strain...
CAEFEM  Element Library <ul><li>Laminate shell elements </li></ul><ul><ul><li>Supports up to 90 layers (can be extended ve...
CAEFEM  Element Library <ul><li>Laminate shell elements (contd.) </li></ul><ul><ul><li>Failure theories : Hill, Hoffman, T...
CAEFEM  Element Library <ul><li>Shell elements (contd.,) </li></ul><ul><ul><li>Supports both thin and thick (shear deforma...
CAEFEM  Element Library <ul><li>Solid elements </li></ul><ul><ul><li>4 to 10 node tetra elements </li></ul></ul><ul><ul><l...
CAEFEM  Element Library <ul><li>Gap elements </li></ul><ul><ul><li>Supports compression along the gap </li></ul></ul><ul><...
CAEFEM  Element Library <ul><li>Contact elements (Contd.,) </li></ul><ul><ul><li>Each segment can be defined using curves,...
Loads and Boundary Conditions <ul><li>Body Loads </li></ul><ul><li>Nodal Loads </li></ul><ul><ul><li>Force/Moment </li></u...
Solution of Equations <ul><li>All analyses support the following solvers </li></ul><ul><ul><li>Skyline solver </li></ul></...
Linear Static Analysis <ul><li>Multi load and constraint cases. </li></ul><ul><ul><li>Hundreds of loads and constraint set...
Frequency & Buckling Analyses <ul><li>Default eigen value method based on model size. </li></ul><ul><li>Jacobi, Subspace, ...
Frequency & Buckling Analyses <ul><li>Sturm sequence check </li></ul><ul><li>Orthogonality check </li></ul><ul><li>Lumped,...
Linear Transient Dynamic Analysis <ul><li>Direct time integration. </li></ul><ul><ul><li>New mark beta method </li></ul></...
Linear Transient Dynamic Analysis <ul><li>Mode superposition method. </li></ul><ul><ul><li>Automatic calculation of normal...
Linear Transient Dynamic Analysis <ul><li>Constant initial conditions. </li></ul><ul><li>Initial conditions can be selecte...
Harmonic (frequency) Response <ul><li>Mode superposition method </li></ul><ul><ul><li>Automatic calculation of normal mode...
Harmonic (frequency) Response <ul><li>Response at user selectable frequencies </li></ul><ul><li>Manual spacing </li></ul><...
Response Spectrum <ul><li>Single point excitation </li></ul><ul><li>Displacement, velocity, acceleration and force spectru...
Response Spectrum <ul><li>Mode superposition method </li></ul><ul><ul><li>Automatic calculation of normal modes. </li></ul...
Damping <ul><li>Viscous damping </li></ul><ul><ul><li>Spring damper element (for direct integration) </li></ul></ul><ul><l...
Modal Damping <ul><li>Frequency dependent modal damping </li></ul><ul><ul><li>Damping factor ζ </li></ul></ul><ul><ul><li>...
Nonlinear Structural Analysis <ul><li>Large Deflections </li></ul><ul><ul><li>Updated, Total Lagrangian and </li></ul></ul...
Nonlinear Structural Analysis <ul><li>Regular and modified Newton Raphson </li></ul><ul><li>Line search for faster converg...
Automatic time stepping <ul><li>Available for Nonlinear static analysis </li></ul><ul><li>Starts with a user specified tim...
Large Deflections of Beams  <ul><li>Example: </li></ul><ul><li>A straight cantilever  modeled by 5 beam elements with a ti...
Restart of an analysis <ul><li>Restart of the analysis from any previous time or time step. </li></ul><ul><li>CAEFEM autom...
Heat Transfer Analysis <ul><li>Linear and nonlinear (Materially nonlinear or radiation) </li></ul><ul><li>Automatic detect...
Heat Transfer Analysis <ul><li>Heat flow, heat generation, convection and radiation loads </li></ul><ul><li>Steady state s...
Heat Transfer Analysis <ul><li>Phase change effects </li></ul><ul><li>Regular and modified Newton Raphson </li></ul><ul><l...
Thermal Stress Analysis <ul><li>Automatic transfer of results to structural analyses to find thermal stresses </li></ul><u...
Bonded Contact Analysis <ul><li>Bonded contact between incompatible meshes </li></ul><ul><li>Supports all analyses types <...
Results <ul><li>Displacements and Reaction Forces </li></ul><ul><li>Velocities and Accelerations </li></ul><ul><li>Tempera...
CAEFEM Quality Assurance <ul><li>Efficient quality assurance process in place. Verified with many NAEFMS benchmark problem...
Disk space management <ul><li>Reduce the amount of information to be written to ASCII output file by selecting Print Optio...
Case Study (MGM Lion Statue) <ul><li>Analysis of a bronze lion at </li></ul><ul><li>the entrance to the MGM Grand Hotel </...
Case Study (Daytona Fabcar) <ul><li>The Daytona Prototype built by FABCAR, demonstrated flawless performance during its ma...
Case Study (Cicero Dental Crown) <ul><li>Cicero Dental Systems, Hoorn, Netherlands  use CAEFEM to perform the stress analy...
Bonded Contact Analysis <ul><li>Bonded contact analysis of a pipe attached to a block </li></ul>Solid Model Finite Element...
Solution of a large problem <ul><li>Pentium 4, 2.54GHz , 2GB RAM </li></ul><ul><li>Nodes: 1,002,288  nodes </li></ul><ul><...
<ul><li>Pentium 4, 2.54GHz, 2.0 GB RAM </li></ul><ul><li>32 bit version </li></ul><ul><li>Nodes:  2,734,075 </li></ul><ul>...
Solution of a large problem Section plot
Large Frequency Analysis <ul><li>Pentium 4, 2.54GHz, 2GB RAM </li></ul><ul><li>32 bit version </li></ul><ul><li>Nodes:  1,...
Large Thermal Analysis Five million nodes <ul><li>Pentium 4, 2.54GHz, 2.0 GB RAM </li></ul><ul><li>32 bit version </li></u...
Huge static analysis Thirteen million nodes <ul><li>Intel Xeon CPU 5130 @ 2.0 G Hz, 8.0 GB RAM </li></ul><ul><li>64 bit ve...
Huge frequency analysis Two thousand modes <ul><li>Natural frequency analysis of a simply supported plate  </li></ul><ul><...
User comments <ul><li>CAEFEM is much faster than the competition. </li></ul><ul><li>CAEFEM is flexible and very easy to us...
Some of the Future Developments <ul><li>Linux and UNIX versions </li></ul><ul><li>Solid modeling support </li></ul><ul><li...
Upcoming SlideShare
Loading in …5
×

Caefem Solution

1,256 views

Published on

CAEFEM Finite element analysis

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Caefem Solution

  1. 1. Concurrent Analysis Corporation
  2. 2. Company Profile <ul><li>Established in 1991. </li></ul><ul><li>CAEFEM was introduced in 1992. </li></ul><ul><li>Interfaced with FEMAP in 1992. </li></ul><ul><li>Started developing CAEFEM New Modeler in 2005. </li></ul><ul><li>Distributed through indirect dealer channel </li></ul><ul><ul><li>(Packaged as “Sprint II” by CDA Group and “Power Solver” by Aegis Software). </li></ul></ul><ul><li>Large and established customer base. </li></ul>
  3. 3. Overview <ul><li>CAEFEM is a finite element analysis software developed from scratch on Windows platform. </li></ul><ul><li>Developed in C/C++ languages </li></ul><ul><li>Offers a complete solution </li></ul><ul><ul><li>Import of CAD geometry </li></ul></ul><ul><ul><li>Geometry based loads and boundary conditions </li></ul></ul><ul><ul><li>Automatic mesh generation </li></ul></ul><ul><ul><li>High speed analyses of huge models </li></ul></ul><ul><ul><li>Supports both linear and nonlinear analyses </li></ul></ul><ul><ul><li>Powerful post processing </li></ul></ul>
  4. 4. Object oriented design <ul><li>State of the art event driven object oriented architecture </li></ul><ul><li>Well documented code. </li></ul><ul><li>Highly Modular. </li></ul><ul><li>Developed in C++ </li></ul><ul><li>Highly reliable product. </li></ul>
  5. 5. Huge model support <ul><li>Handles models with millions of nodes. </li></ul><ul><li>64 bit file addressing to handle huge databases (greater than 2 GB file sizes) </li></ul><ul><li>Support for 3 GB of addressable memory on 32 bit version. </li></ul><ul><li>Highly efficient in management of available resources. </li></ul>
  6. 6. CAEFEM Modeler <ul><li>User Interface </li></ul><ul><ul><li>Fully modeless and event driven operation. </li></ul></ul><ul><ul><ul><li>ability to handle many commands at the same time. </li></ul></ul></ul><ul><ul><li>Resource file driven </li></ul></ul><ul><ul><li>Native Windows look and feel (using Qt) </li></ul></ul><ul><ul><li>Multiple views support for multiple models simultaneously </li></ul></ul><ul><ul><li>Full, Multi-level undo and redo </li></ul></ul><ul><ul><li>Dockable tools bars and windows </li></ul></ul><ul><ul><li>Command tree structure </li></ul></ul>
  7. 7. CAEFEM Modeler <ul><li>User Interface </li></ul><ul><ul><li>Multiple layers with on/off and color trigger. </li></ul></ul><ul><ul><li>Dynamic highlight and tracking during selection operations </li></ul></ul><ul><ul><li>Tracking occurs in multiple windows simultaneously </li></ul></ul><ul><ul><li>Units of measurement displayed in dialog boxes </li></ul></ul><ul><ul><li>Single dialog box to manipulate individual views and also for post-processing </li></ul></ul><ul><ul><li>Dynamic working planes for construction. Can be modified in the middle of a command </li></ul></ul>
  8. 8. CAEFEM Modeler <ul><li>Graphics </li></ul><ul><ul><li>OpenGL graphics </li></ul></ul><ul><ul><li>3-D dynamic, pan, zoom and rotation in model views </li></ul></ul><ul><ul><li>2-D dynamic pan, zoom in graph view </li></ul></ul><ul><ul><li>Shaded, hidden line and wire-frame display </li></ul></ul><ul><ul><li>Display of beams and shells with cross sections </li></ul></ul><ul><ul><li>Support for native Windows printing with customizable image positioning </li></ul></ul><ul><ul><li>Support for creating image snapshots in jpg, bmp and png formats. </li></ul></ul>
  9. 9. CAEFEM Modeler <ul><li>Local languages support </li></ul><ul><ul><li>Very easy for language localization. </li></ul></ul><ul><ul><ul><li>Language dependent data is read from external resource files. </li></ul></ul></ul><ul><ul><li>Both GUI and output files from analysis run share these resource files. </li></ul></ul><ul><ul><li>Currently CAEFEM analysis is available in Japanese language. </li></ul></ul>
  10. 10. CAEFEM Modeler <ul><li>Interfaces </li></ul><ul><ul><li>Interfaces to major CAD formats like Parasolid and ACIS </li></ul></ul><ul><ul><li>Interfaces to FEMAP, Nastran bulk data, GLView Post processor and TMG from MAYA heat transfer analysis . </li></ul></ul><ul><ul><li>API for partners to access CAEFEM database </li></ul></ul><ul><ul><li>Interfaces to any other products can be developed easily due to object oriented design. </li></ul></ul>
  11. 11. CAEFEM Modeler <ul><li>Units of measurement </li></ul><ul><ul><li>User can import files with different units of measurement. </li></ul></ul><ul><ul><li>Ability to convert the current system of units to any other system of units for both the model and results of simulation on the fly. </li></ul></ul><ul><ul><li>User can select combination of any of the supported units. </li></ul></ul><ul><ul><li>Stefan-Boltzmann constant and acceleration due to gravity are automatically assigned based on the units. </li></ul></ul>
  12. 12. CAEFEM Modeler <ul><li>Mesh generation </li></ul><ul><ul><li>Automatic mesh generation of tetrahedron, shell elements etc., from the CAD geometry. </li></ul></ul><ul><ul><li>Supports for both parts and assemblies </li></ul></ul><ul><ul><li>Controls to automatically suppress small features </li></ul></ul><ul><ul><li>Supports for both linear and parabolic elements </li></ul></ul><ul><ul><li>Ability to assign different properties to different parts of the model </li></ul></ul><ul><ul><li>Support for creation and modification of finite element entities with no geometry association </li></ul></ul>
  13. 13. CAEFEM Modeler <ul><li>Miscellaneous </li></ul><ul><ul><li>A comprehensive list of properties and materials </li></ul></ul><ul><ul><li>Extensive material library </li></ul></ul><ul><ul><li>User extensible material library support </li></ul></ul><ul><ul><li>User definable coordinate systems </li></ul></ul><ul><ul><li>Geometry based loads and constraints </li></ul></ul><ul><ul><li>Time and temperature dependencies based on user definable functions. </li></ul></ul><ul><ul><li>Piecewise linear and expressions of functions </li></ul></ul>
  14. 14. CAEFEM Modeler <ul><li>Post processing </li></ul><ul><ul><li>Deformed plots </li></ul></ul><ul><ul><li>Filled color contour plots </li></ul></ul><ul><ul><li>Vector plots </li></ul></ul><ul><ul><li>Single and multi step animation with contours </li></ul></ul><ul><ul><li>Sections and multiple cutting planes </li></ul></ul><ul><ul><li>Iso surfaces </li></ul></ul><ul><ul><li>Bending moment and shear force diagrams </li></ul></ul><ul><ul><li>Graphs with multiple curves </li></ul></ul><ul><ul><li>Query of nodal and elemental results </li></ul></ul>
  15. 15. CAEFEM Modeler <ul><li>Customization </li></ul><ul><ul><li>User preference file stores colors, graphics preferences and units </li></ul></ul><ul><ul><li>User defined material libraries </li></ul></ul><ul><ul><li>Extensive scripting support using the “tcl” programming language </li></ul></ul>
  16. 16. CAEFEM Analyses Types <ul><li>Linear static </li></ul><ul><li>Natural frequency and Mode shapes </li></ul><ul><li>Linear buckling </li></ul><ul><li>Linear transient dynamic </li></ul><ul><li>Steady state harmonic response </li></ul><ul><li>Response Spectrum </li></ul><ul><li>Nonlinear static and transient dynamic </li></ul><ul><li>Steady state and Transient heat transfer (Linear and nonlinear) </li></ul>
  17. 17. CAEFEM Element Library <ul><li>Rod and Cable </li></ul><ul><li>Bar and Beam </li></ul><ul><li>Tube </li></ul><ul><li>Gap and Contact </li></ul><ul><li>Spring and DOF Spring </li></ul><ul><li>Mass (nodal), Damping </li></ul><ul><li>Rigid </li></ul><ul><li>Stiffness & Mass Matrix </li></ul><ul><li>Membrane </li></ul><ul><li>Plane stress </li></ul><ul><li>Plane strain </li></ul><ul><li>Plate (Thin and Thick) </li></ul><ul><li>Laminate </li></ul><ul><li>Axisymmetric </li></ul><ul><li>Solid, Tetra and Wedge </li></ul>Both Linear and Parabolic element types. Non-structural mass for appropriate elements Multiple topologies such as triangle, quad, tetra, wedge and brick
  18. 18. CAEFEM Element Library <ul><li>Truss elements </li></ul><ul><ul><li>Two node elements supports only tension/compression . </li></ul></ul><ul><ul><li>Three translational degrees of freedom per node </li></ul></ul><ul><li>Rod elements </li></ul><ul><ul><li>It is a truss element with torsional degrees freedom </li></ul></ul><ul><li>Cable elements </li></ul><ul><ul><li>Three translational degrees of freedom per node </li></ul></ul><ul><ul><li>Tension only members </li></ul></ul><ul><ul><li>Requires a nonlinear analysis </li></ul></ul>
  19. 19. CAEFEM Element Library <ul><li>Spring damper elements </li></ul><ul><ul><li>Axial or rotational springs </li></ul></ul><ul><ul><li>Axial or rotational dampers </li></ul></ul><ul><li>DOF Spring damper elements </li></ul><ul><ul><li>Similar to Spring damper element </li></ul></ul><ul><ul><li>Stiffness does not depend on the nodal locations </li></ul></ul>
  20. 20. CAEFEM Element Library <ul><li>Beam and bar elements </li></ul><ul><ul><li>Both translational and rotational degrees of freedom </li></ul></ul><ul><ul><li>Handles tension, compression, bending and torsion </li></ul></ul><ul><ul><li>Supports shear correction </li></ul></ul><ul><ul><li>Supports nodal offsets </li></ul></ul><ul><ul><li>Translational and rotational releases to simulate hinge conditions </li></ul></ul><ul><ul><li>Unsymmetric cross sections. </li></ul></ul><ul><ul><li>Tapered cross sections. </li></ul></ul><ul><ul><li>User specified stress recovery locations </li></ul></ul>
  21. 21. CAEFEM Element Library <ul><li>Tube elements </li></ul><ul><ul><li>Similar to bar elements with circular cross section </li></ul></ul><ul><li>Plane stress elements </li></ul><ul><ul><li>Two translational degrees of freedom per node </li></ul></ul><ul><ul><li>3 to 6 node triangles and 4 to 8 node quadrilaterals </li></ul></ul><ul><ul><li>Supports full, reduced and selective reduced integration </li></ul></ul><ul><ul><li>Supports extra shape functions (bubble functions) </li></ul></ul><ul><ul><li>Nodal stresses/strains are obtained by the method of least squares from the values at integration points. </li></ul></ul>
  22. 22. CAEFEM Element Library <ul><li>Plane strain elements </li></ul><ul><ul><li>Similar to plane stress elements except strains are limited to the plane of the model. </li></ul></ul><ul><ul><li>3 to 6 node triangles and 4 to 8 node quadrilaterals </li></ul></ul><ul><ul><li>Supports full, reduced integration and bubble functions </li></ul></ul><ul><li>Axisymmetric elements </li></ul><ul><ul><li>Useful to model body of revolution </li></ul></ul><ul><ul><li>Two translational degrees of freedom per node </li></ul></ul><ul><ul><li>3 to 6 node triangles and 4 to 8 node quadrilaterals </li></ul></ul><ul><ul><li>Supports full, reduced integration and bubble functions </li></ul></ul>
  23. 23. CAEFEM Element Library <ul><li>Laminate shell elements </li></ul><ul><ul><li>Supports up to 90 layers (can be extended very easily) </li></ul></ul><ul><ul><li>3 to 6 node triangles and 4 to 8 node quadrilaterals </li></ul></ul><ul><ul><li>Linear elements are based on shell theory, which consists of membrane and bending parts. </li></ul></ul><ul><ul><li>Parabolic elements are based on Continuum theory </li></ul></ul><ul><ul><li>Considers shear deformation </li></ul></ul><ul><ul><li>User specified reference surface </li></ul></ul><ul><ul><li>Supports both symmetric and non symmetric laminates </li></ul></ul>
  24. 24. CAEFEM Element Library <ul><li>Laminate shell elements (contd.) </li></ul><ul><ul><li>Failure theories : Hill, Hoffman, Tsai-Wu and Max. strain and Interlayer shear failure </li></ul></ul><ul><ul><li>Calculates stresses and strains at top, bottom and middle surface of each layer. </li></ul></ul><ul><ul><li>Calculates inter laminar shear stresses </li></ul></ul><ul><li>Shell elements </li></ul><ul><ul><li>3 to 6 node triangles and 4 to 8 node quadrilaterals </li></ul></ul><ul><ul><li>Linear elements are based on shell theory, which consists of membrane and bending parts. </li></ul></ul><ul><ul><li>Parabolic elements are based on Continuum theory </li></ul></ul>
  25. 25. CAEFEM Element Library <ul><li>Shell elements (contd.,) </li></ul><ul><ul><li>Supports both thin and thick (shear deformation) elements. </li></ul></ul><ul><ul><li>Linear elements has 6 degrees of freedom per node </li></ul></ul><ul><ul><li>Parabolic elements has 5 degrees of freedom per node </li></ul></ul><ul><ul><li>Supports Honeycomb properties </li></ul></ul><ul><ul><li>Handles warped quadrilateral elements </li></ul></ul><ul><ul><li>Stress and strain results in any user coordinate sys. </li></ul></ul><ul><ul><li>Stress resultants in the element/global coordinate sys. </li></ul></ul>
  26. 26. CAEFEM Element Library <ul><li>Solid elements </li></ul><ul><ul><li>4 to 10 node tetra elements </li></ul></ul><ul><ul><li>6 to 15 node wedge elements </li></ul></ul><ul><ul><li>8 to 27 brick elements </li></ul></ul><ul><ul><li>Full, reduced and selective reduced integrations </li></ul></ul><ul><ul><li>Extra shape functions (Bubble functions) </li></ul></ul>
  27. 27. CAEFEM Element Library <ul><li>Gap elements </li></ul><ul><ul><li>Supports compression along the gap </li></ul></ul><ul><ul><li>Coulomb friction along a direction normal to gap </li></ul></ul><ul><ul><li>Implemented using Penalty method </li></ul></ul><ul><ul><li>CAEFEM automatically estimates the penalty stiffness </li></ul></ul><ul><li>Contact elements </li></ul><ul><ul><li>Supports contact between any types of geometry. </li></ul></ul><ul><ul><ul><li>Surface to surface contact elements </li></ul></ul></ul><ul><ul><ul><li>Curve to surface and point to surface </li></ul></ul></ul><ul><ul><li>Bonded contact between incompatible meshes </li></ul></ul><ul><ul><li>Element is defined using contact segments </li></ul></ul>
  28. 28. CAEFEM Element Library <ul><li>Contact elements (Contd.,) </li></ul><ul><ul><li>Each segment can be defined using curves, surfaces, or faces of elements </li></ul></ul><ul><ul><li>Based on penalty method </li></ul></ul><ul><ul><li>CAEFEM automatically estimates penalty stiffness. </li></ul></ul><ul><li>Rigid elements </li></ul><ul><ul><li>Implemented using multi-point constraints </li></ul></ul><ul><li>Mass elements </li></ul><ul><ul><li>Nodal mass elements </li></ul></ul><ul><ul><li>Supports mass and inertia values </li></ul></ul><ul><ul><li>Supports nodal offsets </li></ul></ul>
  29. 29. Loads and Boundary Conditions <ul><li>Body Loads </li></ul><ul><li>Nodal Loads </li></ul><ul><ul><li>Force/Moment </li></ul></ul><ul><ul><li>Displacement </li></ul></ul><ul><ul><li>Acceleration </li></ul></ul><ul><ul><li>Temperature </li></ul></ul><ul><ul><li>Heat Generation </li></ul></ul><ul><ul><li>Heat Flux </li></ul></ul><ul><li>Elemental Loads </li></ul><ul><ul><li>Beam Distributed </li></ul></ul><ul><ul><li>Pressure </li></ul></ul><ul><ul><li>Temperature </li></ul></ul><ul><ul><li>Heat Generation </li></ul></ul><ul><ul><li>Heat Flux </li></ul></ul><ul><ul><li>Convection </li></ul></ul><ul><ul><li>Radiation </li></ul></ul>All can be attached to XY-Functions for Time or Temperature Dependence
  30. 30. Solution of Equations <ul><li>All analyses support the following solvers </li></ul><ul><ul><li>Skyline solver </li></ul></ul><ul><ul><li>Sparse solver </li></ul></ul><ul><ul><li>Preconditioned Conjugate gradient solver </li></ul></ul><ul><ul><ul><li>Handles millions of degrees of freedom </li></ul></ul></ul><ul><li>All solvers support automatic renumbering of nodes to reduce the matrix size </li></ul>
  31. 31. Linear Static Analysis <ul><li>Multi load and constraint cases. </li></ul><ul><ul><li>Hundreds of loads and constraint sets </li></ul></ul><ul><ul><li>User can select any combinations of load and constraint sets. </li></ul></ul><ul><li>Isotropic and orthotropic properties </li></ul><ul><li>Thermal stress calculation </li></ul>
  32. 32. Frequency & Buckling Analyses <ul><li>Default eigen value method based on model size. </li></ul><ul><li>Jacobi, Subspace, Lanczos and Inverse Iterations </li></ul><ul><li>Calculates modes in the range of interest. </li></ul><ul><li>Rigid body modes calculation </li></ul><ul><li>User specified frequency shift </li></ul><ul><li>Mode participation factors </li></ul>
  33. 33. Frequency & Buckling Analyses <ul><li>Sturm sequence check </li></ul><ul><li>Orthogonality check </li></ul><ul><li>Lumped, special lumped and consistent mass matrices </li></ul><ul><li>Stress stiffening </li></ul><ul><li>Reaction forces, element results </li></ul>
  34. 34. Linear Transient Dynamic Analysis <ul><li>Direct time integration. </li></ul><ul><ul><li>New mark beta method </li></ul></ul><ul><ul><li>Rayleigh damping </li></ul></ul><ul><ul><li>Structural damping </li></ul></ul><ul><ul><li>Spring/Damper element </li></ul></ul>
  35. 35. Linear Transient Dynamic Analysis <ul><li>Mode superposition method. </li></ul><ul><ul><li>Automatic calculation of normal modes. </li></ul></ul><ul><ul><li>Ability to select all mode extraction options. </li></ul></ul><ul><ul><li>Rayleigh damping </li></ul></ul><ul><ul><li>Structural damping </li></ul></ul><ul><ul><li>Modal damping </li></ul></ul><ul><ul><ul><li>Damping factor vs mode number </li></ul></ul></ul><ul><ul><ul><li>Damping factor vs frequency </li></ul></ul></ul><ul><ul><ul><li>Structural damping vs frequency </li></ul></ul></ul><ul><ul><ul><li>Quality factor vs frequency </li></ul></ul></ul>
  36. 36. Linear Transient Dynamic Analysis <ul><li>Constant initial conditions. </li></ul><ul><li>Initial conditions can be selected from a load set. </li></ul><ul><li>Lumped, special lumped and consistent mass matrices </li></ul>
  37. 37. Harmonic (frequency) Response <ul><li>Mode superposition method </li></ul><ul><ul><li>Automatic calculation of normal modes. </li></ul></ul><ul><ul><li>Ability to select all mode extraction options. </li></ul></ul><ul><li>Frequency dependent magnitude and phase </li></ul><ul><li>Rayleigh, Structural and Modal dampings </li></ul><ul><li>Frequency dependent damping factor, structural damping, quality factor and mode number. </li></ul>
  38. 38. Harmonic (frequency) Response <ul><li>Response at user selectable frequencies </li></ul><ul><li>Manual spacing </li></ul><ul><ul><li>start end increment </li></ul></ul><ul><li>Automatic spacing </li></ul><ul><ul><li>Number of frequencies per mode </li></ul></ul><ul><ul><li>Frequency band spread (+/-) % </li></ul></ul><ul><li>Using a function </li></ul><ul><ul><li>X values specify the required frequencies </li></ul></ul>
  39. 39. Response Spectrum <ul><li>Single point excitation </li></ul><ul><li>Displacement, velocity, acceleration and force spectrums. Also considers rocking spectrum. </li></ul><ul><li>Base excitation </li></ul><ul><li>Absolute sum, double sum, grouping, naval research lab and SRSS mode combinations. </li></ul><ul><li>Supports linear or logarithmic frequency functions </li></ul>
  40. 40. Response Spectrum <ul><li>Mode superposition method </li></ul><ul><ul><li>Automatic calculation of normal modes. </li></ul></ul><ul><ul><li>Ability to select all mode extraction options. </li></ul></ul><ul><li>Rayleigh, Structural and Modal dampings </li></ul><ul><li>Frequency dependent damping factor, structural damping, quality factor and mode number. </li></ul>
  41. 41. Damping <ul><li>Viscous damping </li></ul><ul><ul><li>Spring damper element (for direct integration) </li></ul></ul><ul><li>Structural damping </li></ul><ul><ul><li>Rayleigh damping </li></ul></ul><ul><ul><ul><li>Damping = α M + β K </li></ul></ul></ul><ul><ul><li>Overall structural damping ( g ) </li></ul></ul><ul><ul><ul><li>Damping = ( g / W3 ) K </li></ul></ul></ul><ul><ul><ul><ul><li>W3 = Equivalent viscous damping conversion </li></ul></ul></ul></ul>
  42. 42. Modal Damping <ul><li>Frequency dependent modal damping </li></ul><ul><ul><li>Damping factor ζ </li></ul></ul><ul><ul><li>Structural damping ( 2 * ζ ) </li></ul></ul><ul><ul><li>Quality factor ( 0.5 / ζ ) </li></ul></ul><ul><li>Mode number dependent damping factor </li></ul>
  43. 43. Nonlinear Structural Analysis <ul><li>Large Deflections </li></ul><ul><ul><li>Updated, Total Lagrangian and </li></ul></ul><ul><ul><ul><li>Co-Rotational formulations </li></ul></ul></ul><ul><li>Material Nonlinearity </li></ul><ul><ul><li>von Mises isotropic and kinematic hardenings </li></ul></ul><ul><ul><li>Bilinear and user specified stress/strain curve </li></ul></ul><ul><ul><li>Mooney Rivlin hyper-elastic model </li></ul></ul><ul><ul><li>Drucker Prager and Mohr-Coulomb soil models </li></ul></ul><ul><li>Contact </li></ul><ul><ul><li>Gap elements (including friction) </li></ul></ul><ul><ul><li>Surface to surface contact elements </li></ul></ul>
  44. 44. Nonlinear Structural Analysis <ul><li>Regular and modified Newton Raphson </li></ul><ul><li>Line search for faster convergence </li></ul><ul><li>Convergence checks on displacements, energy and forces </li></ul><ul><li>Loads and constraints in any user specified coordinate system </li></ul><ul><li>Deformation dependent pressure load </li></ul>
  45. 45. Automatic time stepping <ul><li>Available for Nonlinear static analysis </li></ul><ul><li>Starts with a user specified time step </li></ul><ul><li>Automatically adjusts time step based on the convergence </li></ul><ul><li>Many options are available to speed up the convergence </li></ul>
  46. 46. Large Deflections of Beams <ul><li>Example: </li></ul><ul><li>A straight cantilever modeled by 5 beam elements with a tip moment </li></ul><ul><li>It deforms into a complete circle in just 4 time steps </li></ul>
  47. 47. Restart of an analysis <ul><li>Restart of the analysis from any previous time or time step. </li></ul><ul><li>CAEFEM automatically prompts you for a restart if solution exists at the current time. </li></ul><ul><li>Select ending and incremental times and choose any other required options. </li></ul><ul><li>If solution at a requested restart time does not exist, CAEFEM automatically interpolates the data. </li></ul>
  48. 48. Heat Transfer Analysis <ul><li>Linear and nonlinear (Materially nonlinear or radiation) </li></ul><ul><li>Automatic detection of nonlinearities </li></ul><ul><li>Steady state and transient </li></ul><ul><li>Time and temperature dependent loads and boundary conditions </li></ul>
  49. 49. Heat Transfer Analysis <ul><li>Heat flow, heat generation, convection and radiation loads </li></ul><ul><li>Steady state solution as one of the initial conditions for transient analysis </li></ul><ul><li>Lumped and consistent heat capacity </li></ul>
  50. 50. Heat Transfer Analysis <ul><li>Phase change effects </li></ul><ul><li>Regular and modified Newton Raphson </li></ul><ul><li>Line search for faster convergence </li></ul><ul><li>Euler backward scheme for transient heat transfer </li></ul><ul><li>Convergence checks on temperature and heat flow </li></ul>
  51. 51. Thermal Stress Analysis <ul><li>Automatic transfer of results to structural analyses to find thermal stresses </li></ul><ul><li>Ability to select temperatures from: </li></ul><ul><ul><li>Any load set </li></ul></ul><ul><ul><li>Existing thermal results step </li></ul></ul><ul><ul><li>Corresponding thermal results step </li></ul></ul><ul><ul><li>Corresponding thermal results time </li></ul></ul><ul><ul><li>From a TMG (MAYA heat transfer) results file </li></ul></ul>
  52. 52. Bonded Contact Analysis <ul><li>Bonded contact between incompatible meshes </li></ul><ul><li>Supports all analyses types </li></ul><ul><ul><li>Linear Statics </li></ul></ul><ul><ul><li>Frequency and Buckling </li></ul></ul><ul><ul><li>Linear transient dynamics </li></ul></ul><ul><ul><li>Steady state harmonic response </li></ul></ul><ul><ul><li>Response Spectrum </li></ul></ul><ul><ul><li>Nonlinear statics and dynamics </li></ul></ul><ul><ul><li>Steady state and transient heat transfer </li></ul></ul>Cantilever with incompatible tetrahedral meshes Close up view
  53. 53. Results <ul><li>Displacements and Reaction Forces </li></ul><ul><li>Velocities and Accelerations </li></ul><ul><li>Temperatures and Heat Flow </li></ul><ul><li>Stresses and Strains at Nodes and at Element Integration Points </li></ul><ul><li>Elastic and Plastic Strains at Element Nodes and Integration Points </li></ul><ul><li>Eigen Values and Mode Shapes </li></ul>
  54. 54. CAEFEM Quality Assurance <ul><li>Efficient quality assurance process in place. Verified with many NAEFMS benchmark problems. </li></ul><ul><li>Completely automatic verification process. It checks many types of results data like displacements, stresses, strains, reactions, at nodes, integration points etc., </li></ul><ul><li>Over 1000 internal verification problems. </li></ul><ul><li>Statistics for solution time and results comparison with other solvers. </li></ul><ul><li>Batch process to compare the results of these verification problems </li></ul>
  55. 55. Disk space management <ul><li>Reduce the amount of information to be written to ASCII output file by selecting Print Options. </li></ul><ul><li>For multi time step analysis, save information for only those time steps of importance. (in Print Options) </li></ul><ul><li>Use Start/end/inc format to specify a list of time steps. </li></ul>
  56. 56. Case Study (MGM Lion Statue) <ul><li>Analysis of a bronze lion at </li></ul><ul><li>the entrance to the MGM Grand Hotel </li></ul><ul><li>Largest bronze statue in the United States </li></ul><ul><li>14 meters tall ( 21 meters tall including the pedestal) and 40 000 Kg weight </li></ul><ul><li>Digitally scanned a small scaled model </li></ul><ul><li>Converted to STL file and imported into FEMAP for mesh generation </li></ul><ul><li>Analyzed using CAEFEM </li></ul>
  57. 57. Case Study (Daytona Fabcar) <ul><li>The Daytona Prototype built by FABCAR, demonstrated flawless performance during its maiden win in the Nextel Grand Prix of Miami in March 2003. </li></ul><ul><li>Designed in Solid Edge and analyzed suspension and roll bar using CAEFEM by Fin-el, LLC. </li></ul>
  58. 58. Case Study (Cicero Dental Crown) <ul><li>Cicero Dental Systems, Hoorn, Netherlands use CAEFEM to perform the stress analysis of ceramic dental crowns subjected to chewing forces. </li></ul>
  59. 59. Bonded Contact Analysis <ul><li>Bonded contact analysis of a pipe attached to a block </li></ul>Solid Model Finite Element Model Close up view
  60. 60. Solution of a large problem <ul><li>Pentium 4, 2.54GHz , 2GB RAM </li></ul><ul><li>Nodes: 1,002,288 nodes </li></ul><ul><li>Elements: 631,327 elements </li></ul><ul><li>Linear Static Analysis </li></ul><ul><li>Degrees of freedom: 2,976,792 </li></ul><ul><li>Solution time: 8 minutes </li></ul>
  61. 61. <ul><li>Pentium 4, 2.54GHz, 2.0 GB RAM </li></ul><ul><li>32 bit version </li></ul><ul><li>Nodes: 2,734,075 </li></ul><ul><li>Elements: 1,623,284 </li></ul><ul><li>Linear Static Analysis </li></ul><ul><li>Degrees of freedom: 8,080,935 </li></ul><ul><li>Solution time: 69 minutes </li></ul><ul><li>Steady state heat transfer analysis </li></ul><ul><li>Degrees of freedom: 2,734,075 </li></ul><ul><li>Solution time: 23 minutes </li></ul>Solution of a large problem
  62. 62. Solution of a large problem Section plot
  63. 63. Large Frequency Analysis <ul><li>Pentium 4, 2.54GHz, 2GB RAM </li></ul><ul><li>32 bit version </li></ul><ul><li>Nodes: 1,594,735 </li></ul><ul><li>Elements: 939,587 </li></ul><ul><li>Natural frequency and Mode shapes </li></ul><ul><li>Degrees of freedom: 4,781,745 </li></ul><ul><li>Number of Modes: 8 </li></ul><ul><li>Solution time : 62 minutes </li></ul>
  64. 64. Large Thermal Analysis Five million nodes <ul><li>Pentium 4, 2.54GHz, 2.0 GB RAM </li></ul><ul><li>32 bit version </li></ul><ul><li>Nodes: 4,903,028 </li></ul><ul><li>Elements: 3,285,538 </li></ul><ul><li>Steady state heat transfer analysis </li></ul><ul><li>Solution time: 118 minutes </li></ul>
  65. 65. Huge static analysis Thirteen million nodes <ul><li>Intel Xeon CPU 5130 @ 2.0 G Hz, 8.0 GB RAM </li></ul><ul><li>64 bit version </li></ul><ul><li>Nodes: 13, 294, 565 </li></ul><ul><li>Elements: 9, 428, 996 </li></ul><ul><li>DOF: 39, 785, 163 </li></ul><ul><li>Solution time: 3 Hrs 42 Min </li></ul>Stress vector plot
  66. 66. Huge frequency analysis Two thousand modes <ul><li>Natural frequency analysis of a simply supported plate </li></ul><ul><li>Intel Xeon CPU 5130 @ 2.0 G Hz, 8.0 GB RAM </li></ul><ul><li>64 bit version </li></ul><ul><li>Number of modes: 2000 </li></ul><ul><li>Error in 2000 th frequency: 5.5 % </li></ul><ul><li>Solution time: 1 Hr 33 Min </li></ul>20 th Mode shape
  67. 67. User comments <ul><li>CAEFEM is much faster than the competition. </li></ul><ul><li>CAEFEM is flexible and very easy to use. </li></ul><ul><li>CAEFEM handles analyses of huge models very efficiently. </li></ul><ul><li>CAEFEM is bullet proof. </li></ul>
  68. 68. Some of the Future Developments <ul><li>Linux and UNIX versions </li></ul><ul><li>Solid modeling support </li></ul><ul><li>Improved support for surface to surface contact elements. </li></ul><ul><li>Enhanced nonlinear material models. </li></ul><ul><li>Support for transparency in 3D plots </li></ul><ul><li>Support for Python and Visual Basic scripting </li></ul><ul><li>Support for distributed analysis execution with support for parallel computer architectures. </li></ul><ul><li>Web centric interface for remote monitoring of analysis runs. </li></ul>

×