A benchmarking methodology for CO2 capture processes


Published on

Published in: Technology, Business
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

A benchmarking methodology for CO2 capture processes

  1. 1. Benchmarking Methodology for CO 2 Capture Processes using Minimum Capture Work Targets Rahul Anantharaman , Kristin Jordal and David Berstad SINTEF Energy Research [email_address] Novi Sad, Serbia 06.07.2011
  2. 2. Overview <ul><li>Background and motivation </li></ul><ul><li>Systematic approach to benchmarking </li></ul><ul><li>Methodology </li></ul><ul><li>Analysis </li></ul><ul><li>Conclusions and further work </li></ul>
  3. 3. Benchmarking of processes <ul><li>Practice of comparing the performance metrics of a process to others that are considered as industry standard. </li></ul><ul><li>Snapshot of performance of the process to understand where it is in relation to a particular standard process </li></ul><ul><li>Commonly used performance metrics in CO 2 capture processes: </li></ul><ul><ul><li>Efficiency </li></ul></ul><ul><ul><li>Cost </li></ul></ul>
  4. 4. CO 2 capture processes <ul><li>All CO 2 capture processes require work </li></ul><ul><ul><li>Directly by ancillary units such as compressors, pumps etc. </li></ul></ul><ul><ul><li>Indirectly by thermal energy requirements </li></ul></ul><ul><ul><li>This work leads to energy penalty of CO 2 capture associated with the process </li></ul></ul><ul><li>Emphasis on: improving overall efficiency (or reducing energy penalty) </li></ul><ul><li>What overall process efficiency can be achieved? </li></ul>
  5. 5. Benchmarking of CO 2 capture processes Process A Process B Process C Process D Efficiency Future technnology development Scenario 1 Scenario 2 <ul><li>Efficiency tends to a maximum </li></ul><ul><li>Thermodynamic ideal efficiency </li></ul>
  6. 6. Process efficiencies Thermodynamic ” ideal” Technology limited Economics limited Efficiency Thermodynamic ” ideal” Technology limited Economics limited Efficiency penalty Max theoretical efficiency Min theoretical efficiency penalty
  7. 7. Systematic Approach
  8. 8. Minimum work targets <ul><li>Target before design – key aspect of process synthesis methodologies like Pinch Technology </li></ul><ul><li>The methodology developed will </li></ul><ul><ul><li>Provide ideal work targets (and thus efficiency penalties) for capture processes </li></ul></ul><ul><ul><li>Provide benchmark for comparison </li></ul></ul><ul><ul><li>Identify losses and provide recommendations where largest improvement potentials lie </li></ul></ul><ul><li>It is worth noting that though the thermodynamic minimum will never be achieved, it provides a common and definite basis for comparison of different processes. </li></ul>
  9. 9. Methodology <ul><li>Aim: To evaluate minimum theoretical work requirement for CO 2 capture processes without defining specifics of the unit operations involved. </li></ul><ul><ul><li>Only process inputs and outputs specified </li></ul></ul><ul><ul><li>No detail process flowsheets </li></ul></ul>
  10. 10. Methodology <ul><li>Decompose overall process route into identifiable process steps/unit operations. </li></ul><ul><li>Calculate mass and energy balance for each step of the overall process. </li></ul><ul><li>Calculate the entropy or exergy balance for each unit operation. </li></ul><ul><li>Evaluate minimum energy requirement for the overall process. </li></ul>
  11. 11. Decomposing the overall process route
  12. 12. Analysis <ul><li>The methodology will be used to develop minimum work targets for each of the three capture routes </li></ul><ul><ul><li>Post-combustion capture </li></ul></ul><ul><ul><li>Pre-combustion capture </li></ul></ul><ul><ul><li>Oxy-combustion capture </li></ul></ul><ul><li>Assumed </li></ul><ul><ul><li>Gross power output from the plant is kept constant – 400 MW </li></ul></ul><ul><ul><li>Fuel: Methane </li></ul></ul><ul><ul><li>Pure products from separation processes </li></ul></ul><ul><ul><li>Complete separation </li></ul></ul>
  13. 13. Post-combustion capture CH 4 +2O 2 +7.5N 2 -> CO 2 +0.28H 2 O(g)+1.72H 2 O(l)+7.5N 2 T carnot : 3911 ° C 400 MW -3.8 MW -4.0 MW
  14. 14. Pre-combustion capture CH 4 +2H 2 O -> CO 2 +4H 2 T carnot : 344 ° C -53.5 MW H 2 +0.5O 2 +1.9N 2 -> 0.06H 2 O(g)+0.94H 2 O(l)+1.9N 2 T carnot : 1546 ° C -2.7 MW -3.5 MW 400MW
  15. 15. Oxy-combustion capture -5.9 MW CH 4 +2O 2 + -> CO 2 +0.28H 2 O(g)+1.72H 2 O(l) T carnot : 3911 ° C 400 MW -0.8 MW -3.9 MW
  16. 16. Results
  17. 17. Variation of overall process efficiency with capture rate
  18. 18. Conclusions <ul><li>Developing a systematic methodology for benchmarking CO 2 capture routes utilizing minimum work targets </li></ul><ul><li>The methodology </li></ul><ul><ul><li>Provides ideal work targets (and thus efficiency penalties) for capture processes </li></ul></ul><ul><ul><li>Provides benchmark for comparison </li></ul></ul><ul><ul><li>Provide recommendations for where largest improvement potentials lie and hence guide further research </li></ul></ul><ul><li>Further work </li></ul><ul><ul><li>Extend the methodology by introducing technology limitations as irreversibilities </li></ul></ul>
  19. 19.
  20. 20. Acknowledgements <ul><li>This publication has been produced with support from the BIGCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME) . The authors acknowledge the following industrial partners for their contributions: Aker Solutions, ConocoPhilips, Det Norske Veritas, Gassco, Hydro, Shell, Statkraft, Statoil, TOTAL, GDF SUEZ and the Research Council of Norway (193816/S60). </li></ul>