Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Equações 1º grau simples e com parenteses

47,229 views

Published on

Equações 1º grau simples e com parenteses

  1. 1. Ficha de Trabalho de Matemática Tema: Equações do 1º grau com uma incógnita 7º AnoNome: ____________________________________________________Turma:______N.º____Resolve cada uma das seguintes equações: 1) 2 x  3  33  x 10)  x  3  2 x  1 19) 5b  7 10  3b  13 12 S  12 S  2 S  2 2) 7  2 x  4  x 11) 0,5x  3  3,5  1,5x 20) 0   x  3  2 x  5 S  1 S  0,5 8  S   3 3) 5t  6  3  4t 12) 2a  3  a  5 21) 5x  3  2 x  1  0 S  1 S  8 4 S   7  4) 9  3x  5  4 x 13) 3x 1   x  3 22) 4 x 1  3x  2x  7 x 1 S  2 S  1 S  0 5) 7 x  10  6 x  5 14)  x  1  3x  4 23) 2  x  5  2 x  3x 10x S  15 5 S    3 S    4  8 6) 3x  8  5x  16 15) 2 x 1  3x  10 24) 1  3x  7 x  4  2  0 S  1 11  1 S   S   5 10  7) x  4  5x  4x  8 16) 2 x  3  1  x  2 25) 0  3x  1  x  7 x  10 x 15 S  6 2 S   S  14 3 8) 25  3a  2  2a  17 17) 2 x  7  3  x 1  5 26) 2 x  1  3x  7  0,1 S  10 S  0 S  1,58 18)  x  1  2 x  3 27) 2 x  2 x  0, 2 x  1  0,5x 9) 14t  24  10t  2t  30 S  3 4  10  S   S    3  37 
  2. 2. Resolve cada uma das seguintes equações com parênteses: 1) 2  5  x   10  4 10) 2   t  7   t  0,5  t  4  19) 0,1 x 1  0,5 1  0,1x   2,7 S  2  14  S  46 S     3 2) 3  4  2a  2   0 11) 3a  8 1  a   10  a 20) 2  x  1  3x  5 5   1 S  3 S   S    8   33 3) 3  2b  1  4b  9 12) 5b  2  b  3  0 21)    x  1  2 x  2  x  5 3 6 S  9 S   S   5  7  4) 5x  2  3  x   5 13) 3x  4   2 x  1  2  x  3 22) 5  x  2   3  x  7   0  1  11  S    S     7 S  11  2 5) 8  2  x  3  8 14) 2  x  1  3  x  2   5  x 23) 4 x    x  1  2   x  3 S  3  9 S  0 S     4 6) 2  5  s  1  3  0 15)   x  3   2 x  1  7 1  x  24) 1  3x  7 x  4  2  0 4 1 S   S   5 5  10  S   8  7) 12  1  2  a  1 16)   t  3  2t   3t  1  0 25) 20 x    x  5  3x  5  9 S  2  5 S    S     2  8 8) t  2  t  3  3t 17)   1  2t    3  t   5t 26)   x  2    3x  5   3x  2  3 1  S  9 S   S   2 2 9) 1   n  3  1  3  n  2 18) 0, 2  3  x  3    1  x  27) 0  2  x  3  5  x  5    x  2  9  S   S  4,1  21  S   4 4

×