Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
Prova 7º ano - 4º bimestre - 2010 - SME
Next
Download to read offline and view in fullscreen.

16

Share

Download to read offline

Equações 1º grau simples e com parenteses

Download to read offline

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Equações 1º grau simples e com parenteses

  1. 1. Ficha de Trabalho de Matemática Tema: Equações do 1º grau com uma incógnita 7º AnoNome: ____________________________________________________Turma:______N.º____Resolve cada uma das seguintes equações: 1) 2 x  3  33  x 10)  x  3  2 x  1 19) 5b  7 10  3b  13 12 S  12 S  2 S  2 2) 7  2 x  4  x 11) 0,5x  3  3,5  1,5x 20) 0   x  3  2 x  5 S  1 S  0,5 8  S   3 3) 5t  6  3  4t 12) 2a  3  a  5 21) 5x  3  2 x  1  0 S  1 S  8 4 S   7  4) 9  3x  5  4 x 13) 3x 1   x  3 22) 4 x 1  3x  2x  7 x 1 S  2 S  1 S  0 5) 7 x  10  6 x  5 14)  x  1  3x  4 23) 2  x  5  2 x  3x 10x S  15 5 S    3 S    4  8 6) 3x  8  5x  16 15) 2 x 1  3x  10 24) 1  3x  7 x  4  2  0 S  1 11  1 S   S   5 10  7) x  4  5x  4x  8 16) 2 x  3  1  x  2 25) 0  3x  1  x  7 x  10 x 15 S  6 2 S   S  14 3 8) 25  3a  2  2a  17 17) 2 x  7  3  x 1  5 26) 2 x  1  3x  7  0,1 S  10 S  0 S  1,58 18)  x  1  2 x  3 27) 2 x  2 x  0, 2 x  1  0,5x 9) 14t  24  10t  2t  30 S  3 4  10  S   S    3  37 
  2. 2. Resolve cada uma das seguintes equações com parênteses: 1) 2  5  x   10  4 10) 2   t  7   t  0,5  t  4  19) 0,1 x 1  0,5 1  0,1x   2,7 S  2  14  S  46 S     3 2) 3  4  2a  2   0 11) 3a  8 1  a   10  a 20) 2  x  1  3x  5 5   1 S  3 S   S    8   33 3) 3  2b  1  4b  9 12) 5b  2  b  3  0 21)    x  1  2 x  2  x  5 3 6 S  9 S   S   5  7  4) 5x  2  3  x   5 13) 3x  4   2 x  1  2  x  3 22) 5  x  2   3  x  7   0  1  11  S    S     7 S  11  2 5) 8  2  x  3  8 14) 2  x  1  3  x  2   5  x 23) 4 x    x  1  2   x  3 S  3  9 S  0 S     4 6) 2  5  s  1  3  0 15)   x  3   2 x  1  7 1  x  24) 1  3x  7 x  4  2  0 4 1 S   S   5 5  10  S   8  7) 12  1  2  a  1 16)   t  3  2t   3t  1  0 25) 20 x    x  5  3x  5  9 S  2  5 S    S     2  8 8) t  2  t  3  3t 17)   1  2t    3  t   5t 26)   x  2    3x  5   3x  2  3 1  S  9 S   S   2 2 9) 1   n  3  1  3  n  2 18) 0, 2  3  x  3    1  x  27) 0  2  x  3  5  x  5    x  2  9  S   S  4,1  21  S   4 4
  • LuziaNarokPereira1

    Sep. 14, 2021
  • 2301luisa

    Sep. 8, 2021
  • RonTsa

    Sep. 9, 2020
  • 29Elane

    Apr. 15, 2020
  • AriaWoods

    Sep. 30, 2019
  • josribeiro171

    Sep. 21, 2019
  • JonatanMarquesdaSilva

    Sep. 13, 2019
  • LauraAlves61

    Aug. 2, 2018
  • JaquelineAlbuquerque10

    Mar. 19, 2018
  • saraehenrique

    Dec. 4, 2017
  • flordelotus520

    Nov. 9, 2017
  • vitorjefersonjoaquimcampos

    Mar. 25, 2017
  • MariaAlmeida44

    Feb. 13, 2017
  • Puntusnusis

    May. 5, 2016
  • MariaMagno2

    Nov. 18, 2015
  • luisaohenrique

    Aug. 1, 2013

Views

Total views

71,656

On Slideshare

0

From embeds

0

Number of embeds

18

Actions

Downloads

977

Shares

0

Comments

0

Likes

16

×