QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически

Q
Methodology of
MACHINE LEARNING
in
PERFORMANCE TESTING
(how to find bottlenecks automatically)
t
Krychko Nikita
Access to logs
Logs storage
Knowledge of programming language and algorithms
t
KYIV 2018
Prerequisites
Decrease time of looking for bottleneck
Decrease time of preparing feedback
Describe in details what and where happens
t
KYIV 2018
Why we need it
If everything ok – skip this topic
If not, you should DEBUG
And then find LOAD and BOTTLENECK (place or
resource)
t
KYIV 2018
NOTE
BUG Description Or What developer needs to
reproduce :
Test steps: function (operation) name
Conditions: load in RPS (TPS)
Actual results (what happens, what was changed)
Hardware: server name
t
KYIV 2018
BUG REPORT
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
Performance testing tool log
Resources monitoring log
All logs with traceID
t
KYIV 2018
DEPENDENCIES
Тема доклада
Тема доклада
Тема доклада
KYIV 2018
Performance
testing
tool log
Problem: Sudden increase of response time
Solution: Split a request by layers and test together
t
KYIV 2018
PROBLEM
Sample time = 60
60= 20 + 20 + 20
On layers
60 40 20
LOAD (rps)
Response times (MS)
REST SOAP SQL
10 60 40 20
20 70 50 30
30 80 60 40
40 90 70 50
50 120 100 60
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
Тема доклада
Тема доклада
Тема доклада
KYIV 2018
Get expected
results based on
history timeseries
Problem: Absence of expected results
Solution: Generate them based on historical data
t
KYIV 2018
PROBLEM
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
library(forecast)
fit <- auto.arima(timeseries)
predValue <- forecast(fit,h=1)
Predict
and compare
if ((predValue+10%) < actualValue) {…}
…compare everything you want
library(forecast)
fit <- auto.arima(timeseries)
predValue <- forecast(fit,h=1)
Predict
and compare
if ((predValue+10%) < actualValue) {…}
…compare everything you want
Тема доклада
Тема доклада
Тема доклада
KYIV 2018
Resource monitoring
tool
Problem: Detect conditions when system reaches max limit of
resource usage
Solution: Use k-means clustering to find resources plateau
t
KYIV 2018
PROBLEM
CPU %
RAM %
DISK IO mb
Network mb
(depend on process)
t
KYIV 2018
MONITORING RESORCE LOG
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
MONITORING
RESORCE LOG
clusters <- kmeans(timeseries, 5, nstart=25)
dt <- data.table("value"=timeseries$value,
"cluster"=as.factor(clusters $cluster))
ggplot(dt, aes(x=1:420, y=value, col=cluster))
+ geom_line()
WITH PASSION TO QUALITY
CLUSTERING
clusters <- kmeans(timeseries, 5, nstart=25)
dt <- data.table("value"=timeseries$value,
"cluster"=as.factor(clusters $cluster))
ggplot(dt, aes(x=1:420, y=value, col=cluster))
+ geom_line()
WITH PASSION TO QUALITY
SET CLASS
clusters <- kmeans(timeseries, 5, nstart=25)
dt <- data.table("value"=timeseries$value,
"cluster"=as.factor(clusters $cluster))
ggplot(dt, aes(x=1:420, y=value, col=cluster))
+ geom_line()
WITH PASSION TO QUALITY
DRAWING RESULTS
MONITORING
RESORCE LOG
Algorithm:
•Number of clusters should be less than number of
steps
•Find a cluster with max median
•If timeframe is bigger than time of load step – you
will find your resources plateau (candidate for
bottleneck)
•Filter your log by time and find the load
t
KYIV 2018
CLUSTERING
BUG Description Or What developer need to
reproduce this situation:
Test steps: function (operation) name
Conditions: load in RPS (TPS)
Actual results (what happens, what was changed)
Hardware: server name
t
KYIV 2018
BUG REPORT
Тема доклада
Тема доклада
Тема доклада
KYIV 2018
Magic of
correlation
What and where was changed
Problem: Something changed, and it is unknown who is
responsible for this impact
Solution: Use correlation matrix to detect dependencies and
correlations
t
KYIV 2018
PROBLEM
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
Old build New build Difference
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
Тема доклада
Тема доклада
Тема доклада
KYIV 2018
TRACE ID in
LOGS
Add logging with traceId on all levels for each request
(e.g. http header)
PT_A.GA_20180921131555_10
t
KYIV 2018
TRACE ID FORMAT
PT_A.GA_20180921131555_10
t
KYIV 2018
TRACE ID FORMAT
Performance
testing prefix
Service
initials
Method
initials
Date
Time
Thread
number
1. Gather log from servers
2. Clean logs
3. Merge logs
4. Visualize
t
KYIV 2018
PLAN
LOAD (rps) Response times (MS)
REST SOAP SQL
10 60 40 20
20 70 50 30
30 80 60 40
40 90 70 50
50 120 100 60
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически
No difference with the first approach, but more accurate.
Possibility to get all internal operations, not only known.
t
KYIV 2018
NOTE
Тема доклада
Тема доклада
Тема доклада
KYIV 2018
Questions
1 of 44

Recommended

Efficient Scalar Multiplication for Ate Based Pairing over KSS Curve of Embed... by
Efficient Scalar Multiplication for Ate Based Pairing over KSS Curve of Embed...Efficient Scalar Multiplication for Ate Based Pairing over KSS Curve of Embed...
Efficient Scalar Multiplication for Ate Based Pairing over KSS Curve of Embed...Md. Al-Amin Khandaker Nipu
253 views29 slides
Formula excel by
Formula excelFormula excel
Formula excelNitin Bagga
18 views1 slide
Implementing parallel evolutionary algorithms in concurrent and functional pa... by
Implementing parallel evolutionary algorithms in concurrent and functional pa...Implementing parallel evolutionary algorithms in concurrent and functional pa...
Implementing parallel evolutionary algorithms in concurrent and functional pa...José Albert
396 views23 slides
Link analysis by
Link analysisLink analysis
Link analysisR A Akerkar
2.4K views38 slides
Multinomial Logistic Regression with Apache Spark by
Multinomial Logistic Regression with Apache SparkMultinomial Logistic Regression with Apache Spark
Multinomial Logistic Regression with Apache SparkDB Tsai
12.9K views31 slides
Pistache: A π-Calculus Internal Domain Specific Language for Scala by
Pistache: A π-Calculus Internal Domain Specific Language for ScalaPistache: A π-Calculus Internal Domain Specific Language for Scala
Pistache: A π-Calculus Internal Domain Specific Language for Scalapmatiello
446 views44 slides

More Related Content

What's hot

Gregorian calendar class by
Gregorian calendar classGregorian calendar class
Gregorian calendar classNontawat Wongnuk
700 views10 slides
A Journey from Relational to Graph by
A Journey from Relational to GraphA Journey from Relational to Graph
A Journey from Relational to GraphNakul Jeirath
719 views26 slides
Horn Concerto – AKSW Colloquium by
Horn Concerto – AKSW ColloquiumHorn Concerto – AKSW Colloquium
Horn Concerto – AKSW ColloquiumTommaso Soru
736 views17 slides
Building Scalable Semantic Geospatial RDF Stores by
Building Scalable Semantic Geospatial RDF StoresBuilding Scalable Semantic Geospatial RDF Stores
Building Scalable Semantic Geospatial RDF StoresKostis Kyzirakos
1.4K views31 slides
Introduction to spatial data analysis in r by
Introduction to spatial data analysis in rIntroduction to spatial data analysis in r
Introduction to spatial data analysis in rRichard Wamalwa
1.6K views13 slides
Latency Performance of Encoding with Random Linear Network Coding by
Latency Performance of Encoding with Random Linear Network CodingLatency Performance of Encoding with Random Linear Network Coding
Latency Performance of Encoding with Random Linear Network CodingLars Nielsen
193 views20 slides

What's hot(20)

A Journey from Relational to Graph by Nakul Jeirath
A Journey from Relational to GraphA Journey from Relational to Graph
A Journey from Relational to Graph
Nakul Jeirath719 views
Horn Concerto – AKSW Colloquium by Tommaso Soru
Horn Concerto – AKSW ColloquiumHorn Concerto – AKSW Colloquium
Horn Concerto – AKSW Colloquium
Tommaso Soru736 views
Building Scalable Semantic Geospatial RDF Stores by Kostis Kyzirakos
Building Scalable Semantic Geospatial RDF StoresBuilding Scalable Semantic Geospatial RDF Stores
Building Scalable Semantic Geospatial RDF Stores
Kostis Kyzirakos1.4K views
Introduction to spatial data analysis in r by Richard Wamalwa
Introduction to spatial data analysis in rIntroduction to spatial data analysis in r
Introduction to spatial data analysis in r
Richard Wamalwa1.6K views
Latency Performance of Encoding with Random Linear Network Coding by Lars Nielsen
Latency Performance of Encoding with Random Linear Network CodingLatency Performance of Encoding with Random Linear Network Coding
Latency Performance of Encoding with Random Linear Network Coding
Lars Nielsen193 views
TGS Arcis- Labrador Sea 2D by TGS
TGS Arcis- Labrador Sea 2DTGS Arcis- Labrador Sea 2D
TGS Arcis- Labrador Sea 2D
TGS124 views
AutoControls using Matlab and Simulink by Michael Davis
AutoControls using Matlab and SimulinkAutoControls using Matlab and Simulink
AutoControls using Matlab and Simulink
Michael Davis275 views
構文や語彙意味論の分析成果をプログラムとして具現化する言語 パターンマッチAPIの可能性 by kktctk
構文や語彙意味論の分析成果をプログラムとして具現化する言語パターンマッチAPIの可能性構文や語彙意味論の分析成果をプログラムとして具現化する言語パターンマッチAPIの可能性
構文や語彙意味論の分析成果をプログラムとして具現化する言語 パターンマッチAPIの可能性
kktctk801 views
Hybrid acquisition of temporal scopes for rdf data by Anisa Rula
Hybrid acquisition of temporal scopes for rdf dataHybrid acquisition of temporal scopes for rdf data
Hybrid acquisition of temporal scopes for rdf data
Anisa Rula705 views
The NCAR RDA–Globus Integration: Experiences Developing a Modern Research Dat... by Globus
The NCAR RDA–Globus Integration: Experiences Developing a Modern Research Dat...The NCAR RDA–Globus Integration: Experiences Developing a Modern Research Dat...
The NCAR RDA–Globus Integration: Experiences Developing a Modern Research Dat...
Globus 155 views
Spark 4th Meetup Londond - Building a Product with Spark by samthemonad
Spark 4th Meetup Londond - Building a Product with SparkSpark 4th Meetup Londond - Building a Product with Spark
Spark 4th Meetup Londond - Building a Product with Spark
samthemonad2.7K views
GDG DevFest Xiamen 2017 by Taegyun Jeon
GDG DevFest Xiamen 2017GDG DevFest Xiamen 2017
GDG DevFest Xiamen 2017
Taegyun Jeon548 views

Similar to QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически

User Defined Aggregation in Apache Spark: A Love Story by
User Defined Aggregation in Apache Spark: A Love StoryUser Defined Aggregation in Apache Spark: A Love Story
User Defined Aggregation in Apache Spark: A Love StoryDatabricks
252 views50 slides
User Defined Aggregation in Apache Spark: A Love Story by
User Defined Aggregation in Apache Spark: A Love StoryUser Defined Aggregation in Apache Spark: A Love Story
User Defined Aggregation in Apache Spark: A Love StoryDatabricks
402 views50 slides
Javascript & SQL within database management system by
Javascript & SQL within database management systemJavascript & SQL within database management system
Javascript & SQL within database management systemClusterpoint
1.4K views26 slides
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ... by
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Naoki (Neo) SATO
3.7K views79 slides
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用) by
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Craig Chao
5.4K views42 slides
R and data mining by
R and data miningR and data mining
R and data miningChaozhong Yang
249 views78 slides

Similar to QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически(20)

User Defined Aggregation in Apache Spark: A Love Story by Databricks
User Defined Aggregation in Apache Spark: A Love StoryUser Defined Aggregation in Apache Spark: A Love Story
User Defined Aggregation in Apache Spark: A Love Story
Databricks252 views
User Defined Aggregation in Apache Spark: A Love Story by Databricks
User Defined Aggregation in Apache Spark: A Love StoryUser Defined Aggregation in Apache Spark: A Love Story
User Defined Aggregation in Apache Spark: A Love Story
Databricks402 views
Javascript & SQL within database management system by Clusterpoint
Javascript & SQL within database management systemJavascript & SQL within database management system
Javascript & SQL within database management system
Clusterpoint1.4K views
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ... by Naoki (Neo) SATO
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Naoki (Neo) SATO3.7K views
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用) by Craig Chao
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Craig Chao5.4K views
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy by Anton Yazovskiy
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiyTues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Tues 115pm cassandra + s3 + hadoop = quick auditing and analytics_yazovskiy
Anton Yazovskiy332 views
Polyglot Persistence in the Real World: Cassandra + S3 + MapReduce by thumbtacktech
Polyglot Persistence in the Real World: Cassandra + S3 + MapReducePolyglot Persistence in the Real World: Cassandra + S3 + MapReduce
Polyglot Persistence in the Real World: Cassandra + S3 + MapReduce
thumbtacktech2.5K views
Apache Lens at Hadoop meetup by amarsri
Apache Lens at Hadoop meetupApache Lens at Hadoop meetup
Apache Lens at Hadoop meetup
amarsri7.1K views
Rethinking metrics: metrics 2.0 @ Lisa 2014 by Dieter Plaetinck
Rethinking metrics: metrics 2.0 @ Lisa 2014Rethinking metrics: metrics 2.0 @ Lisa 2014
Rethinking metrics: metrics 2.0 @ Lisa 2014
Dieter Plaetinck1.3K views
Optimization and Mathematical Programming in R and ROI - R Optimization Infra... by Dr. Volkan OBAN
Optimization and Mathematical Programming in R and ROI - R Optimization Infra...Optimization and Mathematical Programming in R and ROI - R Optimization Infra...
Optimization and Mathematical Programming in R and ROI - R Optimization Infra...
Dr. Volkan OBAN1.7K views
Spark Summit EU talk by Herman van Hovell by Spark Summit
Spark Summit EU talk by Herman van HovellSpark Summit EU talk by Herman van Hovell
Spark Summit EU talk by Herman van Hovell
Spark Summit2.3K views
Metrics 2.0 @ Monitorama PDX 2014 by Dieter Plaetinck
Metrics 2.0 @ Monitorama PDX 2014Metrics 2.0 @ Monitorama PDX 2014
Metrics 2.0 @ Monitorama PDX 2014
Dieter Plaetinck16.8K views
OLTP+OLAP=HTAP by EDB
 OLTP+OLAP=HTAP OLTP+OLAP=HTAP
OLTP+OLAP=HTAP
EDB409 views
Vertica mpp columnar dbms by Zvika Gutkin
Vertica mpp columnar dbmsVertica mpp columnar dbms
Vertica mpp columnar dbms
Zvika Gutkin3.6K views
Rewriting Engine for Process Algebras by Anatolii Kmetiuk
Rewriting Engine for Process AlgebrasRewriting Engine for Process Algebras
Rewriting Engine for Process Algebras
Anatolii Kmetiuk236 views

More from QAFest

QA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилин by
QA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилинQA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилин
QA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилинQAFest
979 views44 slides
QA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The Future by
QA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The FutureQA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The Future
QA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The FutureQAFest
931 views44 slides
QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe... by
QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe...QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe...
QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe...QAFest
322 views131 slides
QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и... by
QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и...QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и...
QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и...QAFest
336 views92 slides
QA Fest 2019. Никита Галкин. Как зарабатывать больше by
QA Fest 2019. Никита Галкин. Как зарабатывать большеQA Fest 2019. Никита Галкин. Как зарабатывать больше
QA Fest 2019. Никита Галкин. Как зарабатывать большеQAFest
389 views40 slides
QA Fest 2019. Сергей Пирогов. Why everything is spoiled by
QA Fest 2019. Сергей Пирогов. Why everything is spoiledQA Fest 2019. Сергей Пирогов. Why everything is spoiled
QA Fest 2019. Сергей Пирогов. Why everything is spoiledQAFest
342 views33 slides

More from QAFest(20)

QA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилин by QAFest
QA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилинQA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилин
QA Fest 2019. Сергій Короленко. Топ веб вразливостей за 40 хвилин
QAFest979 views
QA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The Future by QAFest
QA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The FutureQA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The Future
QA Fest 2019. Анна Чернышова. Self-healing test automation 2.0. The Future
QAFest931 views
QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe... by QAFest
QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe...QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe...
QA Fest 2019. Doug Sillars. It's just too Slow: Testing Mobile application pe...
QAFest322 views
QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и... by QAFest
QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и...QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и...
QA Fest 2019. Катерина Спринсян. Параллельное покрытие автотестами и другие и...
QAFest336 views
QA Fest 2019. Никита Галкин. Как зарабатывать больше by QAFest
QA Fest 2019. Никита Галкин. Как зарабатывать большеQA Fest 2019. Никита Галкин. Как зарабатывать больше
QA Fest 2019. Никита Галкин. Как зарабатывать больше
QAFest389 views
QA Fest 2019. Сергей Пирогов. Why everything is spoiled by QAFest
QA Fest 2019. Сергей Пирогов. Why everything is spoiledQA Fest 2019. Сергей Пирогов. Why everything is spoiled
QA Fest 2019. Сергей Пирогов. Why everything is spoiled
QAFest342 views
QA Fest 2019. Сергей Новик. Между мотивацией и выгоранием by QAFest
QA Fest 2019. Сергей Новик. Между мотивацией и выгораниемQA Fest 2019. Сергей Новик. Между мотивацией и выгоранием
QA Fest 2019. Сергей Новик. Между мотивацией и выгоранием
QAFest249 views
QA Fest 2019. Владимир Никонов. Код Шредингера или зачем и как мы тестируем н... by QAFest
QA Fest 2019. Владимир Никонов. Код Шредингера или зачем и как мы тестируем н...QA Fest 2019. Владимир Никонов. Код Шредингера или зачем и как мы тестируем н...
QA Fest 2019. Владимир Никонов. Код Шредингера или зачем и как мы тестируем н...
QAFest338 views
QA Fest 2019. Владимир Трандафилов. GUI automation of WEB application with SV... by QAFest
QA Fest 2019. Владимир Трандафилов. GUI automation of WEB application with SV...QA Fest 2019. Владимир Трандафилов. GUI automation of WEB application with SV...
QA Fest 2019. Владимир Трандафилов. GUI automation of WEB application with SV...
QAFest227 views
QA Fest 2019. Иван Крутов. Bulletproof Selenium Cluster by QAFest
QA Fest 2019. Иван Крутов. Bulletproof Selenium ClusterQA Fest 2019. Иван Крутов. Bulletproof Selenium Cluster
QA Fest 2019. Иван Крутов. Bulletproof Selenium Cluster
QAFest282 views
QA Fest 2019. Николай Мижигурский. Миссия /*не*/выполнима: гуманитарий собесе... by QAFest
QA Fest 2019. Николай Мижигурский. Миссия /*не*/выполнима: гуманитарий собесе...QA Fest 2019. Николай Мижигурский. Миссия /*не*/выполнима: гуманитарий собесе...
QA Fest 2019. Николай Мижигурский. Миссия /*не*/выполнима: гуманитарий собесе...
QAFest251 views
QA Fest 2019. Володимир Стиран. Чим раніше – тим вигідніше, але ніколи не піз... by QAFest
QA Fest 2019. Володимир Стиран. Чим раніше – тим вигідніше, але ніколи не піз...QA Fest 2019. Володимир Стиран. Чим раніше – тим вигідніше, але ніколи не піз...
QA Fest 2019. Володимир Стиран. Чим раніше – тим вигідніше, але ніколи не піз...
QAFest301 views
QA Fest 2019. Дмитрий Прокопук. Mocks and network tricks in UI automation by QAFest
QA Fest 2019. Дмитрий Прокопук. Mocks and network tricks in UI automationQA Fest 2019. Дмитрий Прокопук. Mocks and network tricks in UI automation
QA Fest 2019. Дмитрий Прокопук. Mocks and network tricks in UI automation
QAFest225 views
QA Fest 2019. Екатерина Дядечко. Тестирование медицинского софта — вызовы и в... by QAFest
QA Fest 2019. Екатерина Дядечко. Тестирование медицинского софта — вызовы и в...QA Fest 2019. Екатерина Дядечко. Тестирование медицинского софта — вызовы и в...
QA Fest 2019. Екатерина Дядечко. Тестирование медицинского софта — вызовы и в...
QAFest243 views
QA Fest 2019. Катерина Черникова. Tune your P’s: the pop-art of keeping testa... by QAFest
QA Fest 2019. Катерина Черникова. Tune your P’s: the pop-art of keeping testa...QA Fest 2019. Катерина Черникова. Tune your P’s: the pop-art of keeping testa...
QA Fest 2019. Катерина Черникова. Tune your P’s: the pop-art of keeping testa...
QAFest376 views
QA Fest 2019. Алиса Бойко. Какнезапутаться в коммуникативных сетях IT by QAFest
QA Fest 2019. Алиса Бойко. Какнезапутаться в коммуникативных сетях ITQA Fest 2019. Алиса Бойко. Какнезапутаться в коммуникативных сетях IT
QA Fest 2019. Алиса Бойко. Какнезапутаться в коммуникативных сетях IT
QAFest209 views
QA Fest 2019. Святослав Логин. Как найти уязвимости в мобильном приложении by QAFest
QA Fest 2019. Святослав Логин. Как найти уязвимости в мобильном приложенииQA Fest 2019. Святослав Логин. Как найти уязвимости в мобильном приложении
QA Fest 2019. Святослав Логин. Как найти уязвимости в мобильном приложении
QAFest607 views
QA Fest 2019. Катерина Шепелєва та Інна Оснач. Що українцям потрібно знати пр... by QAFest
QA Fest 2019. Катерина Шепелєва та Інна Оснач. Що українцям потрібно знати пр...QA Fest 2019. Катерина Шепелєва та Інна Оснач. Що українцям потрібно знати пр...
QA Fest 2019. Катерина Шепелєва та Інна Оснач. Що українцям потрібно знати пр...
QAFest321 views
QA Fest 2019. Антон Серпутько. Нагрузочное тестирование распределенных асинхр... by QAFest
QA Fest 2019. Антон Серпутько. Нагрузочное тестирование распределенных асинхр...QA Fest 2019. Антон Серпутько. Нагрузочное тестирование распределенных асинхр...
QA Fest 2019. Антон Серпутько. Нагрузочное тестирование распределенных асинхр...
QAFest296 views
QA Fest 2019. Петр Тарасенко. QA Hackathon - The Cookbook 22 by QAFest
QA Fest 2019. Петр Тарасенко. QA Hackathon - The Cookbook 22QA Fest 2019. Петр Тарасенко. QA Hackathon - The Cookbook 22
QA Fest 2019. Петр Тарасенко. QA Hackathon - The Cookbook 22
QAFest164 views

Recently uploaded

What is Digital Transformation? by
What is Digital Transformation?What is Digital Transformation?
What is Digital Transformation?Mark Brown
46 views11 slides
JRN 362 - Lecture Twenty-Two by
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-TwoRich Hanley
39 views157 slides
ICS3211_lecture 09_2023.pdf by
ICS3211_lecture 09_2023.pdfICS3211_lecture 09_2023.pdf
ICS3211_lecture 09_2023.pdfVanessa Camilleri
150 views10 slides
Thanksgiving!.pdf by
Thanksgiving!.pdfThanksgiving!.pdf
Thanksgiving!.pdfEnglishCEIPdeSigeiro
597 views17 slides
JRN 362 - Lecture Twenty-Three (Epilogue) by
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)Rich Hanley
44 views57 slides
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023 by
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023A Guide to Applying for the Wells Mountain Initiative Scholarship 2023
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023Excellence Foundation for South Sudan
89 views26 slides

Recently uploaded(20)

What is Digital Transformation? by Mark Brown
What is Digital Transformation?What is Digital Transformation?
What is Digital Transformation?
Mark Brown46 views
JRN 362 - Lecture Twenty-Two by Rich Hanley
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-Two
Rich Hanley39 views
JRN 362 - Lecture Twenty-Three (Epilogue) by Rich Hanley
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)
Rich Hanley44 views
Presentation_NC_Future now 2006.pdf by Lora
Presentation_NC_Future now 2006.pdfPresentation_NC_Future now 2006.pdf
Presentation_NC_Future now 2006.pdf
Lora 38 views
Peripheral artery diseases by Dr. Garvit.pptx by garvitnanecha
Peripheral artery diseases by Dr. Garvit.pptxPeripheral artery diseases by Dr. Garvit.pptx
Peripheral artery diseases by Dr. Garvit.pptx
garvitnanecha135 views
The Future of Micro-credentials: Is Small Really Beautiful? by Mark Brown
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown121 views
Pharmaceutical Analysis PPT (BP 102T) by yakshpharmacy009
Pharmaceutical Analysis PPT (BP 102T) Pharmaceutical Analysis PPT (BP 102T)
Pharmaceutical Analysis PPT (BP 102T)
yakshpharmacy009118 views
Interaction of microorganisms with vascular plants.pptx by MicrobiologyMicro
Interaction of microorganisms with vascular plants.pptxInteraction of microorganisms with vascular plants.pptx
Interaction of microorganisms with vascular plants.pptx
ANGULARJS.pdf by ArthyR3
ANGULARJS.pdfANGULARJS.pdf
ANGULARJS.pdf
ArthyR354 views
Career Building in AI - Technologies, Trends and Opportunities by WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy51 views

QA Fest 2018. Никита Кричко. Методология использования машинного обучения в нагрузочном тестировании или как находить узкие места автоматически