Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Presentation by Meshlabs at Zensar #TechShowcase - An iSPIRT ProductNation initiative.

Presentation by Meshlabs at Zensar #TechShowcase - An iSPIRT ProductNation initiative.. Bangalore based firm; has a text analytics platform. Listens to all stake holders and unlocks the hidden value via text analytics.

  • Login to see the comments

  • Be the first to like this

Presentation by Meshlabs at Zensar #TechShowcase - An iSPIRT ProductNation initiative.

  1. 1. MeshLabs Text Analytics ©  2013  MeshLabs  So0ware  Private  Limited   Confiden<al  
  2. 2. About US 2   Featured Customers: Provider  of  text  analy<cs  so0ware  products   Informa<on  Management  |  Customer  Experience  Management    |  Business  Intelligence  |  Regulatory  Compliance   ü  On-­‐premise   ü  SaaS   ü  API   ü  Unified  Content  Access   ü  En<ty  Extrac<on  /  Tagging   ü  Categoriza<on   ü  Summariza<on   ü  Recommenda<on   ü  Faceted  Search   ü  Sen<ment  Analysis   ü  Dashboard  &  Repor<ng  
  3. 3. Text, Text, Everywhere… 3  
  4. 4. 4   Too much volume and variety   Missed  Opportuni1es   Product Managers Customer Insight Managers Research Analysts Customer Care Reps Sales & Marketing Leaders HR Leaders Senior Executives   Cost / Quality concerns over manual methods  Current BI tools won’t work   Structured data only and too complicated   And Not a Single Insight. Multiple Channels, Sources and Types Limited Analysis, Ad hoc, Scalability Issues   Topline and Bottom-line Impact  
  5. 5. Text Analytics 5   Linguis<cs   Sta<s<cs   Seman<cs   powerful  technology   to  automa<cally…   Ingest  all  text  data/content   Extract  valuable  assets   Deliver  ac<onable  insights   1   2   3  
  6. 6. How it Works 6   1   v  Connectors to Enterprise Content Stores, Facebook, Twitter etc. v  Crawlers for getting data from websites v  Upload files & documents – Excel, Word, PDF etc. 2   Process your data – Extract entities, classify, cluster, and score sentiment v  NLP – Natural Language Processing v  Taxonomies & Custom Ontologies v  Machine Learning 3   Analyze output - dashboards, reports, workflows, and alerts v  Dashboards v  Charts & Reports v  Exports Gather your data – Text (Unstructured) and Structured
  7. 7. Key Use Cases 7   Informa<on   Extrac<on   “How  do  I   extract  key   informa<on   from  CRM   Notes  to   predict  cross-­‐ sell  &  up-­‐sell   opportuni<es”   Opinion   Mining   “  How  do  I  gain   ac<onable   insights  from   market  &   customer     interac<ons   across   channels?  ”   Auto-­‐ Categoriza<on   “  As  a  retailer,   how  do  I   display   categorized     lis<ngs  in  the   most  efficient   manner?  “   Intelligent   Agents   “  With  so   much   informa<on   overload,  how   do  I  transform   the   effec<veness   of  my   knowledge   workers?  “  
  8. 8. Customer Testimonial 8   “We  partnered  with  MeshLabs  because  of  their  unique  ability  to   connect  to  and  integrate  all  types  of  data  and  content  from  our   communi<es.  This  allows  us  to  bring  game  changing  analy<cs   and  repor<ng  to  our  clients  enabling  them  to  discover  new   insights  to  refine  messaging,  cra0  an  innova<on  strategy,  and   improve  customer  loyalty.”   THOMAS  FINKLE   CEO,  Think  Passenger,  Inc.   Passenger  is  a  leader  in   providing  Market  Research   Online  Communi1es  PlaKorm  
  9. 9. Our Product – eZi CORE™ Text Analytics Engine 9   MeshLabs eZi CORE ™ eZi Semantic Search ™ eZi Reco ™ eZi Connectors ™ and Crawlers Microsoft SharePoint, Outlook, Alfresco Enterprise Content Web Content eZi Sentiment Analyzer ™ Entity Extractor POS Tagging Classifier Clustering Rules Engine Inference / Reasoner Unified Semantic Index / Triple Store Search Interface Dashboards APIs Custom Solutions •  On-­‐Premise   •  SaaS   •  API  
  10. 10. Core Capabilities 10   ü   Data  Acquisi<on  and  Inges<on   ü   Text  Prepara<on       ü   Named  En<ty  Extrac<on   ü   Auto-­‐Categoriza<on   ü   Feature  Extrac<on   ü   Sen<ment  Analysis   ü   Summariza<on   ü   Recommenda<on   ü   Faceted  Search   ü   Dashboard  &  Repor<ng  
  11. 11. Data Acquisition and Ingestion 11   •  File  System   •  SharePoint   •  Alfresco   •  Web  Crawler   •  TwiUer   •  Facebook   •  Blogs   •  YouTube   •  Discussion  Forums   •  Yahoo  Answers   •  Hadoop  File  System  (S3,   HDFS  etc.)   •  Databases  (any  JDBC   compliant  database)    
  12. 12. 12   Out-of-the-box Taxonomies Airline  Industry   Automobile   Industry   Banking   Company  -­‐   Industry   Classifica<on   Computers  and   Laptops   Corporate  Social   Responsibility   Cosme<cs   Customer  Service   -­‐  Generic   Hotels   Human  Resources   -­‐  Voice  of   Employee   Product-­‐Category   Classifica<on   Real  Estate   Retail   Smart  Phones  and   Tablets   Telecom   Travel  
  13. 13. 13   Dashboards & Reports
  14. 14. Sentiment Analysis 14   •  Feature-­‐Based  Sen<ment  Analysis  supported   •  Lexicon  based  analysis   §  Per-­‐domain  lexicon  supported   •  Uses  deep  parsing  to     §  Iden<fy  features   §  Associa<on  of  nega<on  and  suppor<ng  words   •  Mul<ple  levels  of  sen<ment  scoring  supported   •  Sen<ment  Analysis  done  at  sentence  fragment  scope   •  Weighted  rollup  of  sen<ment  score  provides  overall   view  
  15. 15. Feature Detection 15   •  Features:  Extrac<on  of  Context  Relevant   Nouns  /  Noun  Phrases     ü  Noun  Phrase  Extrac<on   ü  Deep  Parsing  and  Lexical  Chaining   ü  Sen<ment  Scoring    at  Feature-­‐level   “The  coffee  was  bad,  but  the  sandwich  was  good.”     •  Featureless  Sen<ment  Score  –  Neutral   •  Featured-­‐based:   ü  Overall  Sen<ment  –  Neutral   ü  Coffee  –  Nega<ve   ü  Sandwich  -­‐  Posi<ve  
  16. 16. Contact Us 16   @meshlabs   USA:  1-­‐602-­‐617-­‐9370    |    India:  91-­‐9986004572