Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Significance of carbon sequestration in agriculture and climate security

698 views

Published on

Praveen thakur M.Sc. Agri

Published in: Science
  • Be the first to comment

Significance of carbon sequestration in agriculture and climate security

  1. 1. WELCOME 1
  2. 2. SARDARKRUSHINAGAR DANTIWADA AGRICULTURAL UNIVERSITY Significance of Soil Carbon Sequestration in Agriculture and Climatic Security Praveen Thakur M.Sc. (Agri.) Department of Agril. Chemistry & Soil Science C.P. College of Agriculture SDAU, Sardarkrushinagar 2
  3. 3. Significance of Soil Carbon Sequestration in Agriculture and Climatic Security my) Time: Major Advisor Dr. B.T. Patel Professor, CIL, Directorate of Research, SDAU, Sardarkrushinagar Minor Advisor Dr. P.P. Chaudhari Associate Professor, Dept. of Agronomy, College of Agriculture, Tharad, SDAU, Sardarkrushinagar 3
  4. 4. Carbon- Climate Interaction 4
  5. 5. Significance of Soil Carbon Sequestration in Agriculture and Climatic Security “Unpredictable changes in the chemical composition of the earth’s atmosphere and climate variability observed over comparable time periods which magnify the challenge of increasing agricultural production to feed the expanding population.” 5
  6. 6. Chain of Climate change Carbon Concentration Solar radiation Temperature Rainfall pattern Drought Floods 6
  7. 7. Fig. 1 : Contribution of Different Gases in Global GHG Emission IPCC Report 2014 7
  8. 8. Fig.2: Global Greenhouse Gas Emission by Economic Sector IPCC Report 2014 8
  9. 9. Fig. 3:Cumulative GHG Emissions 1990-2011 (% of World Total) http://bit.ly/11SMpjA) 9 World Resource Institute
  10. 10. Fig.4: Carbon Dioxide Concentration 10
  11. 11. Anthropogenic URBANIZATION -Industrialization - Emission of GHG’s DEFORESTATION -Soil Erosion INTENSIFIED AGRO- ECOSYSTEM -Secondary Salinity -Chemical Fertilizer Natural Sunspot and solar cycle Ocean currents Wild fires Volcanic eruptions Methane emission from marshy land Causes of Climate Change 11
  12. 12. On Weather On Biodiversity Sea level rise On Marine Organisms On Agriculture On Glaciers & Icesheet On Economy Impact of Climate Change 12
  13. 13. Agriculture Population Dynamics of pest and diseases Genetic erosion Depletion of water level Production and productivity Degradation of soil nutrients Depletion of nutritive value (Anon., 2013) Impact of Climate Change on Agriculture 13
  14. 14. Fig.5 : Global Emission of Greenhouse Gases Estimated temperature in 2100 4.5°C Business as usual 2°C Path 3.5°C current national commitment with no change after the pledge period ending 2025-2030 2000 2025 2050 2075 2100 BillontonsCO2equivalentperyear 0 100 150 200 (Science 350,2015) 14 7.4 °C
  15. 15. Significance of Soil Carbon Sequestration in Agriculture and Climatic Security Carbon sequestration implies transferring atmospheric CO2 into long-lived pools and storing it securely so it not immediately reemitted. 15(Lal, 2004)
  16. 16. Fig. 6 : Global Carbon Cycle Fluxes shown are approximate for the period 2000–05, as documented by the IPCC. (USGS Report, 2008) 16
  17. 17. CARBON STOCK 17
  18. 18. Table 1 : Global Soil Carbon Pool Depth(m) Soil C Pool (Pg) SOC SIC Total 0.3 704 234 938 1.0 1505 722 2227 2.0 3300 1700 5000 Permafrost (3m) - - 1400-1700 (Batjes, 1996) 18
  19. 19. Table 2 : Carbon stock in Indian soil (Order-wise) Soil Order Soil Depth (m) Carbon Stock (Pg) SOC SIC TC Entisols 0-0.3 0.62 0.89 1.51 0-1.5 2.56 2.86 5.42 Vertisols 0-0.3 2.59 1.07 3.66 0-1.5 8.77 6.14 14.90 Inceptisols 0-0.3 2.17 0.62 2.79 0-1.5 5.81 7.04 12.85 Aridisols 0-0.3 0.74 1.40 2.14 0-1.5 2.02 13.40 15.42 Conti…19 (Bhattacharyya et al., 2000)
  20. 20. Soil Order Soil Depth (m) SOC SIC TC Mollisols 0-0.3 0.09 00 0.09 0-1.5 0.49 0.07 0.56 Alfisols 0-0.3 3.14 0.16 3.30 0-1.5 9.72 4.48 14.20 Ultisols 0-0.3 0.20 0.0 0.20 0-1.5 0.55 0.0 0.55 Total 0-0.3 9.55 4.14 13.69 0-1.5 29.92 33.98 63.9 (Bhattacharyya et al., 2000) 20
  21. 21. Table 3 : Organic and inorganic carbon stock in Indian soils (0-0.3m soil depth) Soil Carbon Pool Alluvial soils (Pg) Black soils (Pg) Arid soils (Pg) Brown forest soils (Pg) Red soils (Pg) Total (Pg) Organic 2.79 2.56 0.71 0.12 3.33 9.55 Inorganic 1.52 1.08 1.39 00 0.15 4.14 Total 4.31 3.64 2.11 0.12 3.52 13.69 (Bhattacharyya et al , 2005) 21
  22. 22. Bioclimatic systems Coverage (Mha) SOC Stock (Pg) SIC Stock (Pg) Total Carbon Stock (Pg) Arid cold 15.2 0.6 0.7 1.3 Arid hot 36.8 0.4 1.0 1.4 Semi-arid 116.4 2.9 1.9 4.8 Subhumid 105 2.5 0.3 2.8 Humid to per humid 34.9 2.1 0.04 2.14 Coastal 20.4 1.3 0.07 1.37 Ranges in rainfall; arid= <550mm; semi-arid= 550-1000mm; subhumid=1000- 1500mm; humid to per humid= 1200-3200mm; Table 4 : Soil carbon stocks in different bioclimatic systems in India (Bhattacharyya et al., 2008)22
  23. 23. 0 5 10 15 20 25 30 35 40 45 50 Soil organic C (stock) Soil inorganic C (stock) Area(%) Relativeconcentrationofcarbonstock (%respectivestocks) Plateau & Himalaya Coastal IGP Gujarat Dry Island Hills Fig.7 : Soil C stocks and areal extent of seven major agroclimatic zone of India (Bhattacharyya et al. 2009) 23
  24. 24. Carbon- Agriculture Interaction 24
  25. 25. Indirect Role of Carbon in Agriculture •Improving Soil Structure •Sustaining Microbial & Faunal Activities •Suppressing Soil Borne Pathogens •Nutrient Supply 25
  26. 26. Fig.08 : Physical Properties in Soils of the DOK Farming Systems Results are presented relative to CONFYM (=100%) in four radial graphs. Absolute values for 100% are as follows. Perco. stab:43.3 ml Min -1 Aggregate.stability:55%stable aggregates >250 mm Bulk density: 1.23 g cm -3 ( Mäder et al. 2002) 26 Switzerland
  27. 27. Results are presented relative to CONFYM (=100%) in four radial graphs. Absolute values for 100% are as follows. Microbial biomass, 285 mg Cmic kg-1; dehydrogenase activity, 133mg TPF kg-1h-1; protease activity, 238 mg tyrosine kg-1 h-1; alkaline phosphatase, 33 mg phenol kg-1 h-1; saccharase, 526 mg reduced sugar kg-1 h-1; mycorrhiza, 13.4% root length colonized by mycorrhizal fungi. Fig.09: Biological Properties in Soils of DOK Farming Systems (Mäder et al. 2002) 27
  28. 28. FIG. 10 : Monnier’s conceptual model 28 ( Abiven et al. 2009)
  29. 29. Fig. 11 : Schematic overview of the relationships between time-to-maximum group and magnitude for the different organic product ( Abiven et al. 2009) The circles represent the average of the different organic products categories in magnitude and in the time-to- maximum groups. 29
  30. 30. Fig.12: Effect of O.M. Decomposition on Diseases Suppression ( Bonanomi et al 2010) Data are expressed as percentage of the total number of studies (n=426) 30
  31. 31. Suppressing Soil Borne Pathogens Data are expressed as percentage values calculated from the total number of studies within each OM type. The number of studies is reported in brackets. Fig.13: Effect of Organic Matter Decomposition on Disease Suppression in Relation to the Organic Matter Type (Bonanomi et al 2010) 31
  32. 32. Fig.14: Disease Suppression Dynamics During Organic Matter Decomposition (Bonanomi et al 2010) 32
  33. 33. Fig.15 : The Coupled Cycling of H2O, C, N, P, S and the Ecosystem Services Generated (Lal, 2010) 33
  34. 34. Agriculture‘s Potentiality Towards Soil Carbon Sequestration 34
  35. 35. Treatment Initial soil C (Mg ha-1) SOC after 29 years (Mg ha-1) C loss rate (Mg C ha-1 yr-1) C Addition rate (Mg C ha-1yr-1 ) Turn over period (yr) SMBC (kg ha-1) Akola (Sorghum-Wheat) Control 10.12 9.90 0.015 0.15 67 418 N - 11.66 0.060 0.70 17 444 NP - 12.32 0.086 1.06 12 537 NPK - 12.98 0.105 1.36 10 576 NPK +FYM - 15.40 0.124 1.91 8.1 803 Table 5 : Initial value, steady state value, overall rate of loss, rate of addition, period of turnover and soil biological activity in long term fertilizer and manuring at Akola (Singh et al. 1996)35 Vertisol Akola,(MH)
  36. 36. Table 6 : Amount of crop residue C inputs into soils across treatments and cropping systems Cropping System Amount crop residue C inputs (Mg C ha-1y-1) Treatment MeanControl NPK NPK+Organics Rice-mustard-sesame 1.88 2.76 3.75 2.80 Rice-wheat-fallow 1.82 3.33 3.97 3.04 Rice-fallow-berseem 2.45 3.17 4.16 3.26 Rice-wheat-jute 2.58 5.08 6.17 4.61 Rice-fallow-Rice 2.58 3.56 4.30 3.48 Mean 2.26 3.58 4.47 3.44 (Mandal et al.2007)36
  37. 37. Treatments Tillage O.C.(g/kg) Total N (%) Manuring CT MT MEAN CT MT MEAN RDF (100%) 5.70 5.55 5.62 0.059 0.058 0.058 RDF (50%) 4.1 4.60 4.35 0.057 0.058 0.057 RDF (50%) + 5t FYM/ha 5.45 5.8 5.62 0.056 0.057 0.056 RDF (50%) + 10t FYM/ha 5.85 5.9 5.87 0.056 0.058 0.057 RDF (50%) + 15t FYM/ha 5.95 6.12 6.03 0.057 0.062 0.059 RDF (50%) + green manuring 5.61 5.59 5.60 0.058 0.060 0.059 Mean 5.44 5.59 - 0.057 0.059 - SE (m)± 0.036 0.063 0.089 0.0002 0.00036 0.0005 CD (p=0.05) NS 0.186 0.261 0.0006 0.0011 0.0015 Conti… Table 07: Effect of tillage and manuring on soil organic carbon, total nitrogen and yield of cotton 37 (Sonune et al. 2013) Akola Medium Deep Vertisol CT :Conventional tillagae MT: Minimum tillageRDF(100%) 50:25:00 N:P:K kg/ha
  38. 38. Treatments Tillage Seed cotton (kg/ha) Cotton (kg/ha) Manuring CT MT MEAN CT MT MEAN RDF (100%) 1262 1295 1278 3041 3149 3095 RDF (50%) 953 1002 978 2430 2596 2513 RDF (50%) + 5t FYM/ha 1138 1219 1178 2944 3195 3069 RDF (50%) + 10t FYM/ha 1300 1396 1348 3279 3349 3314 RDF (50%) + 15t FYM/ha 1500 1594 1547 3625 3732 3678 RDF (50%) + green manuring 1155 1245 1200 2987 3010 2998 Mean 1218 1292 3051 3172 SE (m)± 35.8 62 87.7 36.0 62 88 CD (p=0.05) NS 182 257 105 182 NS (Sonune et al. 2013) Significance of Soil Carbon Sequestration in Agriculture and Climatic Security 38
  39. 39. Cropping systems Available nutrients (kg/ha) OC (g/kg) Kharif Rabi Summer N P2O5 K2O C1:Pearlmillet Mustard Fallow 194 16.16 197 3.57 C2: Greengram + Sunhemp (2:1) (BBF)- Castor Castor continue Greengram 212 21.00 207 3.77 C3: Greengram+ Cowpea (2:1) (BBF)- Castor Castor continue Sorghum + Cowpea (3:1) 214 22.13 193 3.45 C4: Greengram+ Sunheamp(2:1) (BBF)- Castor+ Bottlegourd Castor continue Castor + Bottlegourd continue 206 19.10 205 3.73 C5: Bt Cotton + Sunhemp (1:2)- Castor + Bitter gourd Bt Cotton + Castor continue Castor + Bitter gourd Continue 218 20.40 204 3.68 C6: Greengram Fennel + Cauliflower (1:1) Fennel Continue 202 21.11 202 3.43 C7: Greengram Mustard+ Lucerne Lucerne continue 203 19.13 209 3.48 C8: Bt Cotton + Greengram(1:2) Bt Cotton + Castor after Greengram Castor continue 213 17.32 219 3.65 Initial 195 15.92 198 0.33 S. K. Nagar (Annual report 2013-14) Loamy sand soil Table 8 : Soil fertility status at the end of various cropping sequence 39
  40. 40. Table 9 : Effect of organic nutrient management on soil organic carbon stock and carbon sequestration rate (Rice-Rice sequence) Treatments Soil organic carbon content (g kg-1) Bulk Density (t m-3) Total soil organic carbon stock (t ha-1) Soil organic carbon sequestration rate (t ha-1year-1)Initail 22.28 t ha-1 0-15cm 15-30cm 0-15cm 15-30cm 0-15cm 15-30cm Total T1 7.84 5.72 1.65 1.72 19.40 14.76 34.16 1.98 T2 9.32 7.82 1.6 1.64 22.23 19.12 41.34 3.17 T3 11.25 7.26 1.58 1.62 26.66 17.64 44.30 3.67 T4 11.50 7.83 1.56 1.61 26.91 18.91 45.81 3.92 T5 11.43 8.27 1.55 1.59 26.57 19.72 46.29 4.00 T6 10.52 7.73 1.57 1.6 24.77 18.55 43.32 3.50 T7 10.24 7.60 1.58 1.61 24.27 18.35 42.62 3.35 SEm(±) 0.510 0.375 0.026 0.024 0.425 0.317 1.250 0.263 LSD (0.05) 1.58 1.13 0.08 0.08 1.275 0.96 3.86 0.81 Treatment details Kharif T1: Dhanicha@ 25 kg seed ha-1;T2 : T1 + FYM 5t ha-1 (basal); T3 : T1 + vermicompost 2t ha-1 (basal); T4 : T1 + vermicompost 2t ha-1 (split); T5 : T1 + FYM + vermicompost 2t ha-1 (split); T6 : T1 + FYM + vermicompost 2t ha-1 (basal); T7: T1 + FYM + Panchagavya Summer T1 : Control ; T2 : FYM 5t ha-1 (basal); T3 : Vermicompost 2t ha-1 (basal);T4 : Vermicompost 2t ha-1 (split); T5 : FYM + vermicompost 2t ha-1 (split);T6 : FYM + vermicompost 2t ha-1 (basal);T7 : FYM + Panchagavya (Pradhan et al. , 2015) Bhubaneswar Sandy Loam 40
  41. 41. Table 10 : Soil organic carbon (SOC) pools under different management regimes in surface (0-10 cm) and subsurface (10-30 cm) paddy growing soils in fertilizer experiment at Barak Valley, Assam Treatments Sub fractionation of organic carbon% 0-10 cm Very labile (CVL) Labile (CL) Less Labile (CLL) Non-Labile (CNL) TOC(%) Control 0.28 (22%) 0.04 (3%) 0.10 (8%) 0.88 (67%) 1.30a VM 0.33 (24%) 0.10 (7%) 0.17 (12%) 0.76 (57%) 1.36b Inorganic 0.30 (23%) 0.10 (8%) 0.14 (11%) 0.79 (59%) 1.33a Organic 0.36 (25%) 0.13 (9%) 0.12 (8%) 0.85 (59%) 1.46ab Organic+ inorganic 0.37 (26%) 0.14 (10%) 0.05 (4%) 0.87 (60%) 1.43ab Control: without any organic and inorganic fertilizer; VM: village management (partially decomposed cow dung applied @ 70-80 Mg ha-1); Inorganic (NPK) fertilizer (130-100-60) urea, single superphosphate and muriate of potash); Organic manure (phosphate solubilizing biofertilizer and azobacter bio-fertilizer applied in two steps: seedlings dip andsoil application; Organic+Inorganic: both organic and inorganic fertilizer applied together (Nath et al.,2015) Conti…41
  42. 42. Treatments Sub fractionation of organic carbon% 10-30cm Very labile (CVL) Labile (CL) Less Labile (CLL) Non-Labile (CNL) TOC(%) Control 0.13 (19%) 0.06 (9%) 0.16 (23%) 0.35 (50%) 0.70a VM 0.15 (19%) 0.10 (13%) 0.15 (20%) 0.40 (49%) 0.80b Inorganic 0.13 (16%) 0.11 (14%) 0.17 (21%) 0.40 (49%) 0.81b Organic 0.14 (19%) 0.09 (12%) 0.10 (14%) 0.41 (55%) 0.74ab Organic+ inorganic 0.16 (19%) 0.09 (11%) 0.15 (18%) 0.45 (53%) 0.85b Control: without any organic and inorganic fertilizer; VM: village management (partially decomposed cow dung applied @ 70-80 Mg ha-1); Inorganic (NPK) fertilizer (130-100-60) urea, single superphosphate and muriate of potash); Organic manure (phosphate solubilizing biofertilizer and azobacter bio-fertilizer applied in two steps: seedlings dip andsoil application; Organic+Inorganic: both organic and inorganic fertilizer applied together (Nath et al.,2015) Conti…42
  43. 43. Treatments Sub fractionation of organic carbon% 0-30cm Active pool (CAP) Passive Pool (CPP) Control 26% 74% VM 31% 69% Inorganic 30% 70% Organic 33% 67% Organic+ inorganic 33% 67% Control: without any organic and inorganic fertilizer; VM: village management (partially decomposed cow dung applied @ 70-80 Mg ha-1); Inorganic (NPK) fertilizer (130-100-60) urea, single superphosphate and muriate of potash); Organic (phosphate solubilizing biofertilizer and azobacter bio-fertilizer applied in two steps: seedlings dip andsoil application; Organic+Inorganic: both organic and inorganic fertilizer applied together (Nath et al.,2015) 43
  44. 44. Table 11: Organic carbon (%) of soil and C sequestration under different MPTs after thirty year of plantation Treatments Organic carbon (%) Mean C sequestration in tree (kg/tree) C sequestration in tree (t/ha)0-30 cm 30-60 cm 60-90 cm Neem (Azadirachta indica) 0.81 0.35 0.32 0.49 (226.67) 1343.53 1492.81 Khejdi (Prosopis cineraria) 0.62 0.46 0.45 0.51 (240.00) 1497.82 1664.24 Gando baval (Prosopis juliflora) 0.58 0.57 0.35 0.50 (233.33) 1847.11 2052.35 Israel babool (Acacia tortolis) 0.83 0.59 0.47 0.63 (320.00) 1834.05 2037.83 Control 0.18 0.14 0.14 0.15 - - SEm.± 0.03 0.02 0.02 223.22 248.02 C.D. at 5 % 0.11 0.07 0.07 N.S. N.S. C.V. (%) 11.49 10.70 13.12 27.38 27.38 Figures in parentheses indicate the per cent values increase over control. (Patel ,2016) S.K. Nagar Sandy Loam Soil 44
  45. 45. Constraints Soil Carbon Storage Potential Biophysical, e.g. climate, soil type Management, e.g. land-use tradition Economic, e.g. pressure and drives Political, e.g. failing incentives Months Years Decades Centuries Significance of Soil Carbon Sequestration in Agriculture and Climatic Security 45
  46. 46. Significance of Soil Carbon Sequestration in Agriculture and Climatic Security CONCLUSION Soil C sequestration is a bridge to the future until non-carbon fuel options take effect. The data indicate that projected annual global emissions during the next century would need to be reduced by more than 75 percent in order to stabilize atmospheric CO2 at about 550 ppm. This concentration would be about twice the level of CO2 in the pre-industrial atmosphere. Soil C sequestration is certainly a step in the right direction to improve soils, increase crop yield and mitigate climate change through judicious land use and recommended management practices (RMPs) but decisions about soil carbon sequestration require careful consideration of priorities and tradeoffs among multiple resources. 46
  47. 47. Acknowledgements Dr. B.T. Patel Jignesh, Chena, Ashish, Alpesh Ms. Sweta, Mr. Sunil Nath, Mr. Kashyap, Mr. Basavraj Vikram Jha , Shalini Verma, Parth Rahevar & Microsoft Thank you

×