Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Development of efficient methane fermentation process and biogas plant technologies Janusz Gołaszewski Center for Renewabl...
„… with  B IOGAS  alone we can power the whole world … ” – E.J. Nyns <ul><li>Nature produces gas everywhere </li></ul><ul>...
<ul><li>Theses </li></ul><ul><li>1. Managing all kinds of  organic waste, including agricultural waste, is an  overriding ...
Energy demand <Policy>Environment <ul><li>Energy sources: </li></ul><ul><li>nonrenewable </li></ul><ul><li>renewable </li>...
<ul><li>Outline </li></ul><ul><li>Biogas in a general energy  and environmental  context  </li></ul><ul><li>Methane cycle ...
Nakicenovic N. 2006. Global Energy Perspectives to 2050 and Beyond. Intern. Conf. „Energy Paths – Horison 2050, Viena. Glo...
Source: IEA (World), EUROSTAT (EU-27) Production of primary energy  (world,  EU-27,  Poland) in  2008 -2009  (% of total, ...
Primary energy production from renewable energy   sources, breakdown by individual source (EU-27, 2008) Source:  European ...
Primary energy from biomass supply   (ktoe) Source: DG Energy, 24 NREAPs waste agriculture and fisheries forestry 2006: do...
Source: IEA  2010 Climate changes scenarios scenario scenario Reference scenario Nuclear CCS Combustible renewables Energy...
1st p artial recapitulation A gricultural biomass  and  waste  are energy resources with a potential to be  significant co...
<ul><li>fertilizers </li></ul><ul><li>rice cultivation </li></ul><ul><li>livestock </li></ul><ul><li>biomass burning </li>...
<ul><li>Biomass >>> Biogas </li></ul><ul><li>specific environmental squeeze  </li></ul><ul><li>always added  value </li></...
METAN CH 4 The v alue of waste biomass is at least the value of generated energy Neterowicz J., Haglund G. 2011. Energy in...
2nd p artial recapitulation (nearly)  a ny organic agricultural and communal waste is natural feedstock  for biogas produc...
Solar energy  –  Photosynthesis  –  Biomass –  Decay – Biogas –  Methane   –  Useful e nergy Sunlight + CO 2   +  H 2 O   ...
Potential of photosynthesis conversion efficiency  from  solar  energy to biomass (chemical energy) Klass D. Biomass for r...
Biomethane cycle in the b iogeochemical carbon cycle CH 4  900 mln t 90% biomass decomposition
Biogas  (methane)  cycle Solar  energy CO 2 H 2 O Biomass Energy CO 2 H 2 O Nutrients Bioga s Digest ate (biomass) Organic...
Biogas  production  - facts <ul><li>Brief h istory  (Cheremisinoff et al. 1980)  </li></ul><ul><ul><li>Assyria – 10th cent...
Primary biogas energy output in UE, 2009 (ktoe) Source: EurObserv’ER 2010 <ul><li>KEY </li></ul><ul><li>light green – land...
Biogas <ul><li>is produced from the anaerobic digestion of organic matter </li></ul><ul><li>made up of  4 0- 7 0% CH 4 ,  ...
Biogas Net energy performance of biomethane per 1 ha for chosen crops in comparison with other biofuels  Heat of combustio...
Bioprocesses in biogas production Carboxylic acids (valeric, formic, propanoic, …) Alkohols Gases Acetates CO 2 , H 2 Biog...
Bedding added Water added As excreted Covered Lagoon Complete mix Plug-flow Digester Type by Manure Characteristics An exa...
Chosen parameters of the AD process: pH  5.5-6.5 acetogenic phase and 6.8-7.2 methanogenic phase C:N:P:S =600:15:5:1;  COD...
Chosen characteristics of 63 German agricultural biogas plants built in 2007-2009 Source: Bundesmessprogramm, 2009 (FNR) z...
<ul><li>Biogas plants </li></ul><ul><li>agricultural </li></ul><ul><ul><li>main substrate – livestock waste biomass (+ cos...
<ul><li>Primary characteristics of  feedstock s of agricultural biogas plant </li></ul><ul><li>different yield and quality...
D edicated crops with high energy potential <ul><li>I  competitive to food crop production </li></ul><ul><ul><li>maize </l...
Feedstock s – mix of land and water biomass Water biomass Terrestrial  biomass Laboratory digesters Conservation and condi...
Modules of biogas plant Supply logistics  Pretreatment Shredding  Substrate  – organic matter Conservation Conditioning St...
B iomass  –  problems to consider <ul><li>Dedicated crops </li></ul><ul><li>available land </li></ul><ul><li>integrated cr...
<ul><li>L ogistics  of supply   and pretreatment  – to reduce energy lost and to initiate biodegradation </li></ul><ul><li...
Digestor <ul><li>horizontal or vertical </li></ul><ul><li>insulation  </li></ul><ul><li>systems of heating, fil l ing of t...
<ul><li>to remove biogas produced from the digester </li></ul><ul><li>t o transport it to the end-use, either for direct c...
Biogas Desulfuring Desulfuring Desulfuring Desulfuring Reforming Compression Boiler CHP MCFC, SOFC Compressed tank Heat He...
whole digestate Digestate separated into liquid and solid fractions <ul><li>Fertilizer or soil </li></ul><ul><li>coditione...
Recapitulation  – environmental, energy, and economy effects Any organic waste provides feedstock for  a  biogas plant wit...
Recapitulation  – i nnovation opportunities Even if the development of methane fermentation processes is at an advanced st...
Recapitulation  – trends <ul><li>A biogas plant may be considered as an element of the future biorafinery: </li></ul><ul><...
Upcoming SlideShare
Loading in …5
×

4.10 - "Development of efficient methane fermentation process and biogas plant technologies" - Janusz Golaszewski [EN]

4,093 views

Published on

Published in: Technology, Business
  • Be the first to comment

4.10 - "Development of efficient methane fermentation process and biogas plant technologies" - Janusz Golaszewski [EN]

  1. 1. Development of efficient methane fermentation process and biogas plant technologies Janusz Gołaszewski Center for Renewable Energy Research of the University of Warmia and Mazury in Olsztyn Baltic Eco-Energy Cluster in Gdańsk [email_address] Projekt kluczowy nr POIG.01.01.02-00-016/08 Modelowe kompleksy agroenergetyczne jako przykład kogeneracji rozproszonej opartej na lokalnych i odnawialnych źródłach energii Model agroenergy complexes as an example of distributed cogeneration based on local renewable energy sources
  2. 2. „… with B IOGAS alone we can power the whole world … ” – E.J. Nyns <ul><li>Nature produces gas everywhere </li></ul><ul><li>where plants, people and animals are, there is organic waste </li></ul><ul><li>where there is organic matter, solid or liquid , there are naturally run ning decomposition processes </li></ul><ul><li>methanogenesis is an absolutely natural process , which is now adapted by human s in biogas plants </li></ul><ul><li>People, by generating organic waste (industry, agriculture, communal, etc.), have created an environmental problem – the lack of balance in GHG emission </li></ul>
  3. 3. <ul><li>Theses </li></ul><ul><li>1. Managing all kinds of organic waste, including agricultural waste, is an overriding issue for immediate solution and application </li></ul><ul><li>2. B iogas plant, as a link in a distributed energy generation system , has an important role in </li></ul><ul><li>waste recycling </li></ul><ul><li>development of energy -producing function of farming </li></ul><ul><li>balancing the carbon cycle in the environment </li></ul><ul><li>3. Biogas is an universal fuel , which can find a wide array of energy uses </li></ul><ul><li>Outline </li></ul><ul><li>Biogas in a general energy and environemental context </li></ul><ul><li>Methane cycle </li></ul><ul><li>Methane fermentation process </li></ul><ul><li>Physical and biochemical conditions of biogas production </li></ul><ul><li>Substrates of biogas plant , including d edicated crops </li></ul><ul><li>Technological process of biogas production and use </li></ul><ul><li>Recapitulation </li></ul>
  4. 4. Energy demand <Policy>Environment <ul><li>Energy sources: </li></ul><ul><li>nonrenewable </li></ul><ul><li>renewable </li></ul><ul><li>alternative </li></ul><ul><li>Environment: </li></ul><ul><li>climates </li></ul><ul><li>ecosystems </li></ul><ul><li>landscapes </li></ul><ul><li>resources </li></ul><ul><li>elements </li></ul><ul><li>Policy </li></ul><ul><li>sustainable development </li></ul><ul><li>energy security – prosumption model </li></ul>BIOGAS
  5. 5. <ul><li>Outline </li></ul><ul><li>Biogas in a general energy and environmental context </li></ul><ul><li>Methane cycle </li></ul><ul><li>Methane fermentation process </li></ul><ul><li>Physical and biochemical conditions of biogas production </li></ul><ul><li>Substrates of biogas plant , including d edicated crops </li></ul><ul><li>Technological process of biogas production and use </li></ul><ul><li>Recapitulation </li></ul>
  6. 6. Nakicenovic N. 2006. Global Energy Perspectives to 2050 and Beyond. Intern. Conf. „Energy Paths – Horison 2050, Viena. Global Use of Primary Energy – brief history 2011 ~13%
  7. 7. Source: IEA (World), EUROSTAT (EU-27) Production of primary energy (world, EU-27, Poland) in 2008 -2009 (% of total, based on tonnes of oil equivalent ) 1990 >>> 2008 Energy supply: 103 >>> 144 P Wh P ower supply : 1 2 >>> 20 P Wh
  8. 8. Primary energy production from renewable energy sources, breakdown by individual source (EU-27, 2008) Source: European Commission . Renewables make the difference . Luxembourg: Publications Office of the European Union 2011
  9. 9. Primary energy from biomass supply (ktoe) Source: DG Energy, 24 NREAPs waste agriculture and fisheries forestry 2006: domestic + imported 2015, 2020: domestic
  10. 10. Source: IEA 2010 Climate changes scenarios scenario scenario Reference scenario Nuclear CCS Combustible renewables Energy efficiency n
  11. 11. 1st p artial recapitulation A gricultural biomass and waste are energy resources with a potential to be significant contributors to the future energy portfolio accompanied by low greenhouse gases emission
  12. 12. <ul><li>fertilizers </li></ul><ul><li>rice cultivation </li></ul><ul><li>livestock </li></ul><ul><li>biomass burning </li></ul><ul><li>manufacturing of agricultural factors of production </li></ul><ul><li>increase of agricultural land for energy crops </li></ul>Rys.8. Sources of GHG emission s from agriculture . (own acc. to US EPA , 2000) <ul><li>Agriculture – 14% of global GHG emission 1 </li></ul><ul><li>LCE CO 2 is the result of: </li></ul><ul><li>energy expenditure (fertilizers, cultivation, etc.) </li></ul><ul><li>transformation of forests and grasslands in to a rable land </li></ul>Main s ources of GHG emission by agriculture Rice cultivation 7% Fertilizers 11% Other agricultural practices 31% Management of residuals from livestock production 38% Emission of NO x N 2 O and CH 4 (without CO 2 ) Livestock 13% <ul><li>Biomass >>> Biogas </li></ul><ul><li>specific environmental preasure </li></ul><ul><li>always value added </li></ul><ul><ul><li>energy from agricultural waste and crops </li></ul></ul><ul><ul><li>pro-environmental dimension </li></ul></ul>1 the World Resources Institute (Annual Report 2006-2007)
  13. 13. <ul><li>Biomass >>> Biogas </li></ul><ul><li>specific environmental squeeze </li></ul><ul><li>always added value </li></ul><ul><ul><li>additonal energy from agricultural and communal waste </li></ul></ul><ul><ul><li>pro-environmental dimension </li></ul></ul>Communal biow aste
  14. 14. METAN CH 4 The v alue of waste biomass is at least the value of generated energy Neterowicz J., Haglund G. 2011. Energy in Sweden. Mat. Conf. „SymbioCity – Sustainability by Sweden”, Warszawa Sweden – ca 85% of energy in heating grid is from waste Neterowicz J., Haglund G. 2011. Energy in Sweden. Mat. Conf. „SymbioCity – Sustainability by Sweden”, Warszawa Paris – ca 45% of energy in heating grid is from waste Polish Biogas Association Global scale: 800 million ton es of bio waste = 64 billion m 3 of biogas = 32 billion ton es of liquid fuels = 110 GWh of electric energy 2 t waste ~ 1 t coal EU scale: 1 20- 1 40 mil tones (~70% bio waste ) Biow aste
  15. 15. 2nd p artial recapitulation (nearly) a ny organic agricultural and communal waste is natural feedstock for biogas production – there is a specific environmental pressure to utilize it
  16. 16. Solar energy – Photosynthesis – Biomass – Decay – Biogas – Methane – Useful e nergy Sunlight + CO 2 + H 2 O + Mineral s form the soil N P K Ca … „ CH 2 O ” + O 2 Organic matter SUBSTRATES PRODUCTS BIOGAS Methane fermentation Methane Hydrogen 100% 20% + 0.2-3% Energy Methabolic processes atmosphere naturally biogas plant Digestate
  17. 17. Potential of photosynthesis conversion efficiency from solar energy to biomass (chemical energy) Klass D. Biomass for renewable energy and fuels. Encyclopedia of Energy. Oxford: Elsevier Inc.; 2004. How to store and utilize more solar energy? – by increasing the photo-active area of plants (C4 type of photosynthesis (corn, sugarcane) is more efficient, mostly by reduction in photorespiration) Plant productivity = sunlight, water, nutrients plus environmental conditions: temperature, water availability How to reduce water use? – by increasing water use efficiency (corn, sugar cane, miscanthus, cereals – 100-800 kg H 2 O per kg biomass depending on irrigation, fertilization – C4 plants are at the bottom of the range) How to balance the fertilization? – by increasing nutrient use efficiency=decrease cultivation energy inputs (accumulation of nutrients in DM accounts for 5-10% of the mass, current NUE is at most 40% for N, 10% for P, and 40% for K) Crop Type of photosynthesis Photosynthesis conversion efficiency Most of annual crops C3 0.3 Switchgrass C4 0.6 Corn C4 0.8 Willow and poplar C3 0.4 Tropical sugarcane C4 2.6 Tropical Napier grass C4 2.8
  18. 18. Biomethane cycle in the b iogeochemical carbon cycle CH 4 900 mln t 90% biomass decomposition
  19. 19. Biogas (methane) cycle Solar energy CO 2 H 2 O Biomass Energy CO 2 H 2 O Nutrients Bioga s Digest ate (biomass) Organic fertilizer Natural decomposition Biogas plant
  20. 20. Biogas production - facts <ul><li>Brief h istory (Cheremisinoff et al. 1980) </li></ul><ul><ul><li>Assyria – 10th century BC – first records </li></ul></ul><ul><ul><li>1859 – first biogas plant – leper colony waste management (Mumbai) </li></ul></ul><ul><ul><li>1895 – biogas for lightning streets (Exeter) </li></ul></ul><ul><ul><li>WW II – use of biogas as a transport ation fuel </li></ul></ul><ul><li>Biogas production in E U-27 - 25,2 TWh (Eurobserv’ER 2009) </li></ul><ul><ul><li>toe/1000 inhabitants </li></ul></ul><ul><ul><ul><li>Germany (51.5), the UK (27.8), Luxembourg (24.5), Austria (19.7), Denmark (18.0) , </li></ul></ul></ul><ul><ul><ul><li>Poland - 21st place, 2.6 toe/1000 inhabitants (98 ktoe) </li></ul></ul></ul><ul><li>Use of biogas </li></ul><ul><ul><li>electricity ( cogeneration over 60%) </li></ul></ul><ul><ul><li>integration of biogas production with gas network </li></ul></ul><ul><ul><li>(Germany , 10% of biomethane share in gas network by 2030) </li></ul></ul><ul><ul><li>public transportation (Sweden – in assumption, </li></ul></ul><ul><ul><li>public transportation will be propelled by biogas) </li></ul></ul>
  21. 21. Primary biogas energy output in UE, 2009 (ktoe) Source: EurObserv’ER 2010 <ul><li>KEY </li></ul><ul><li>light green – landfill gas </li></ul><ul><li>medium green – urban sewage and industrial effluent sludge gas </li></ul><ul><li>dark green – other biogas </li></ul><ul><li>Dominant substrate </li></ul><ul><ul><li>agricultural biomass (Germany, Netherlands, Austria) </li></ul></ul><ul><ul><li>landfill (Great Britain, France, Italy, Spain) </li></ul></ul><ul><ul><li>sewage sludge (Sweden, Poland) </li></ul></ul><ul><ul><li>8.3 Mtoe , incl. ~ 25 TWh </li></ul></ul>
  22. 22. Biogas <ul><li>is produced from the anaerobic digestion of organic matter </li></ul><ul><li>made up of 4 0- 7 0% CH 4 , 3 0-50% CO 2 , up to 10% other gases, H 2 S, H, CO, O 2 , and N </li></ul><ul><li>calorific value 17-27 MJ/m 3 – 5-6 kWh/m 3 </li></ul><ul><li>Universal biofuel </li></ul><ul><li>can be used in energy generation and transportation </li></ul><ul><ul><li>can be used for all applications designed for natural gas </li></ul></ul><ul><ul><li>can be combusted to produce heat and steam with a heating efficiency up to 55% </li></ul></ul><ul><ul><li>it can to generate electricity with an electrical efficiency up to 40% </li></ul></ul><ul><ul><li>it can generate electricity used in co -generation and tri-generation producing heat and electricity at more than 60% efficiency in the case of fuel cell technology (co- and tri-generation) </li></ul></ul><ul><ul><li>it can fuel biogas vehicles </li></ul></ul><ul><ul><li>it can be integrated into the natural gas grid if the biogas is upgraded to increase the methane content to 97%. </li></ul></ul>
  23. 23. Biogas Net energy performance of biomethane per 1 ha for chosen crops in comparison with other biofuels Heat of combustion in comparison with fossil fuels and firewood Szlachta 2008, De Baere 2007, Fachagentur Nachwachsende Rohstoffe e.V.   Fuel s Heat of combustion Equivalent of 1 m 3 biogas at the heat of combustion 26 MJ/ m 3 Biogas 17-27 MJ/ m 3 1 m 3 Natural gas 33 MJ/ m 3 0.7 m 3 Diesel 42 MJ/ l 0.6 l Coal 23 MJ/ kg 1.1 kg Firewood 13 MJ/ kg 1.95 kg
  24. 24. Bioprocesses in biogas production Carboxylic acids (valeric, formic, propanoic, …) Alkohols Gases Acetates CO 2 , H 2 Biogas Simple sugars, alcohols, higher fatty acids, amino acids Carbohydrates Lipid s Proteins Organic matter hydrolitic and fermentative bacteria acidic bacteria acetogenic bacteria methanogenic bacteria 1. Hydrolysis - biopolymers decomposition 2. Acidogenesis - volatile fatty acid s f ormation 3. Acetogenesis - formation of methanogen ic substrates 4. Methanogenesis - biogas formation celullase cel l obiase xylanse amylase l ipase protease Bacteriocides (an.) Clostridia (an.) Bifidobacteria (an.) Streptococci (f. an.) Enterobacteriaceae (f. an.) autotrophs, heterotrophs Acetobacter woodii Clostridium aceticum Clostridium termoautotrophicum . Methanosarcina barkerei Metanococcus mazei Methanotrix soehngenii 70% use acetate s 30% use hydrogen and carbon dioxide
  25. 25. Bedding added Water added As excreted Covered Lagoon Complete mix Plug-flow Digester Type by Manure Characteristics An example for manure as a feedstock – technical assumptions in the biogas plant project Source: own on the basis of USEPA 2004 Biogas plant – initial technological criteria depend on the substrate
  26. 26. Chosen parameters of the AD process: pH 5.5-6.5 acetogenic phase and 6.8-7.2 methanogenic phase C:N:P:S =600:15:5:1; COD:N:P:S =800:5:1:0.5 C:N – 15:1-30:1 Substrate: Water (i.e. manure) – 1:1 (~8-10% DM.) Microelements: Fe, Ni, Co, Se, Mo, W (toxic in higher concentration) Inhibitors: antibiotics, pesticides, synthetic detergents, soluble salts of Cu, Zn, Ni, Hg, Cr In dependence on fermentation environment: salts of Na, K, Ca, Mg – facilitation or inhibition depending on the concentration Biogas plant – foundamental criteria Criteria Fermentation process AD stages single-stage two-stage multi-stage Temperature of AD psychrophilic (10-25ºC) mesophilic (35-40ºC) thermophilic (52-55ºC) Flow characteristics Batch (batch, batch/percolation) Continuous (CSTR, PFR) DM in substrate dry fermentation (>15%) wet fermentation (<12%)
  27. 27. Chosen characteristics of 63 German agricultural biogas plants built in 2007-2009 Source: Bundesmessprogramm, 2009 (FNR) za Linke B. 2009. Biogas plants in Germany – experiences in implementation and processing. Mat. Conf. „Bioenergia w rolnictwie ze szczególnym uwzględnieniem biogazu”, Poznań.
  28. 28. <ul><li>Biogas plants </li></ul><ul><li>agricultural </li></ul><ul><ul><li>main substrate – livestock waste biomass (+ cosubstrate) </li></ul></ul><ul><ul><li>main substrate – biomass from dedicated crops (+ cosubstrate) </li></ul></ul><ul><li>recycling </li></ul><ul><ul><li>anaerobic digestion of municipal solid waste (landfills) and sewage sludge </li></ul></ul><ul><li>agricultural-recycling </li></ul><ul><li>Substrates of agricultural origin </li></ul><ul><li>Waste from primary agricultural production </li></ul><ul><ul><li>animal waste (manure, liquid manure), straw, beet leaves, etc. </li></ul></ul><ul><li>Waste from agricultural processing </li></ul><ul><ul><li>from slaughter house s, food processing industries: brans, molasses, brewer's spent grain, distillery wastewater, whey, etc. </li></ul></ul><ul><li>Organic residu e s of agricultural origin </li></ul><ul><ul><li>Biowaste from households, food residuals, used vegetable fats and oils, etc. </li></ul></ul><ul><li>Feedstock from dedicated energy crops </li></ul><ul><ul><li>Annual: maize, sorgo, beet, etc. </li></ul></ul><ul><ul><li>Perennial: miscant hu s, S ida hermaphrodita , legumes, legumes in mix with grasses (orchard grass, timothy-grass) </li></ul></ul>
  29. 29. <ul><li>Primary characteristics of feedstock s of agricultural biogas plant </li></ul><ul><li>different yield and quality of biogas </li></ul><ul><li>substrate ought to be free of pathogens, in the other case </li></ul><ul><ul><li>pasteurization 70ºC </li></ul></ul><ul><ul><li>sterilization 130ºC </li></ul></ul><ul><li>different organic compounds of a substrate may be easily or hardly degradable </li></ul><ul><ul><li>carbohydrates, proteins, lipids – 0.4, 0,5, 0.7 m 3  CH 4 kg -1 </li></ul></ul><ul><ul><li>cellulose, hemicelluloses, lignin ! </li></ul></ul>Biogas yield for chosen agricultural substrates. Source: own acc. to Linke B. 2009. Biogas plants in Germany – experiences in implementation and processing. Mat. konf. „Bioenergia w rolnict wie ze szczególnym uwzględnieniem biogazu”, Poznań. Biomass DM VS Biogas ( % of FW ) ( % DM ) m 3 (Mg VS) -1 Animal waste - manure Cattle manure 22 80 410 Swine manure 8 70 420 Pultry manure >2 0 77 560 Animal waste – liquid manure Cattle slurry 10 93 225 Swine slurry 6 9 5 300 Poultry slurry 15 89 320 Waste from agricultural processing Melasses 73 78 510 Sugar beet residuals 22 90 840 Potato pulp 14 93 720 Dedicated crops - silage Maize 35 97 730 Grass 35 91 540 Winter rye 33 93 730
  30. 30. D edicated crops with high energy potential <ul><li>I competitive to food crop production </li></ul><ul><ul><li>maize </li></ul></ul><ul><ul><li>legumes </li></ul></ul><ul><ul><li>cereals </li></ul></ul><ul><li>II competitive to feed crop production with well known conservation techniques </li></ul><ul><ul><li>grasses in mix with leguminous crops </li></ul></ul><ul><ul><li>maize </li></ul></ul><ul><ul><li>winter rye </li></ul></ul><ul><ul><li>legumes </li></ul></ul><ul><ul><li>beet leaves </li></ul></ul><ul><li>III plants not common as substrates but with high potential </li></ul><ul><ul><li>miscanthus </li></ul></ul><ul><ul><li>c ale </li></ul></ul><ul><ul><li>Fallopia sachalinensis </li></ul></ul><ul><ul><li>as well as certain forms of n ettles and Rheum </li></ul></ul><ul><li>IV other </li></ul><ul><ul><li>cereal grains </li></ul></ul><ul><ul><li>root and tuber crops (beet, potato and Jerusalem artichoke) </li></ul></ul>
  31. 31. Feedstock s – mix of land and water biomass Water biomass Terrestrial biomass Laboratory digesters Conservation and conditioning Źródło: Opracowania autorów: Krzemieniewski M., Dębowski M., Zieliński M.
  32. 32. Modules of biogas plant Supply logistics Pretreatment Shredding Substrate – organic matter Conservation Conditioning Storage Digestion Homogenization Sanitation Biogas production Storage of digestate Use of d i gestate Biomethane Energy use: electricity, Heating, cooling, transportation <ul><li>D evelopmental problems: </li></ul><ul><li>m odulari z ation , standardisation </li></ul><ul><li>power of biogas plant – series of types (mi c ro-, me s o-, macro-scale) </li></ul><ul><ul><li>Micro-biogas plant – not cost-effectve but always value added by additional energy from agri-waste and avoided GHG emission </li></ul></ul>       
  33. 33. B iomass – problems to consider <ul><li>Dedicated crops </li></ul><ul><li>available land </li></ul><ul><li>integrated crop rotation (food, feed, industrial and energy production should be taken into consideration) </li></ul><ul><li>intercropping </li></ul><ul><li>high yielding crops and cultivars </li></ul><ul><li>avoiding monoculture! </li></ul><ul><li>optimization of fertilization (production, use of digestate) </li></ul><ul><li>Animal waste, agricultural residues, industry waste, etc.) </li></ul><ul><li>sanitation of waste according to the procedures applicable to such substrates due to potential health hazards and epizootics (category I, II, or III). </li></ul>
  34. 34. <ul><li>L ogistics of supply and pretreatment – to reduce energy lost and to initiate biodegradation </li></ul><ul><li>Form of substrates from energy crops </li></ul><ul><li>fresh biomass </li></ul><ul><li>silaging – a method of conservation and preconditioning </li></ul><ul><li>– it may be given additives (bacteria, enzymes which start biodegradation) </li></ul><ul><li>– often higher biogas production than from fresh biomass </li></ul><ul><li>hay </li></ul><ul><li>g rass s ilage </li></ul><ul><li>biomass from press machines </li></ul><ul><li>green crop sequence supply </li></ul>How to facilitate and speed-up hydrolysis and fermentation process? <ul><ul><li>physical </li></ul></ul><ul><ul><li>shredding </li></ul></ul><ul><ul><ul><li>steam </li></ul></ul></ul><ul><ul><ul><li>thermohydrolisis </li></ul></ul></ul><ul><ul><ul><li>w et oxidatio m </li></ul></ul></ul><ul><ul><ul><li>ultrasounds </li></ul></ul></ul><ul><ul><ul><li>radiation </li></ul></ul></ul><ul><ul><li>chemical </li></ul></ul><ul><ul><ul><li>acids and bases </li></ul></ul></ul><ul><ul><ul><li>solvents and oxidants </li></ul></ul></ul><ul><ul><li>biological </li></ul></ul><ul><ul><ul><li>microorganisms </li></ul></ul></ul><ul><ul><ul><li>enzymes </li></ul></ul></ul><ul><li>mixing feedstock s for the right consistency and C:N ratio </li></ul><ul><li>involve addition of water. </li></ul><ul><li>s creen ning for contaminants </li></ul>
  35. 35. Digestor <ul><li>horizontal or vertical </li></ul><ul><li>insulation </li></ul><ul><li>systems of heating, fil l ing of the bioreactor (batch, continuous), mixi ing, biogas and d igestate outlets , and storage tanks </li></ul><ul><li>monitoring system of fermentation process parameters </li></ul><ul><ul><li>pH </li></ul></ul><ul><ul><li>temperature </li></ul></ul><ul><ul><li>b iogas composition </li></ul></ul><ul><ul><li>content of volatile fatty acids (VFA’s) </li></ul></ul><ul><ul><li>proportion of VFA’s to the total inorganic carbon TIC (a measure of acidification) (VFA:TIC), </li></ul></ul><ul><ul><li>r edox potential (-300-330 mV) </li></ul></ul><ul><ul><li>NH 3 </li></ul></ul><ul><ul><li>other </li></ul></ul>
  36. 36. <ul><li>to remove biogas produced from the digester </li></ul><ul><li>t o transport it to the end-use, either for direct combustion or electricity generation. </li></ul>Biog as Handling System <ul><li>Components: </li></ul><ul><li>piping </li></ul><ul><li>a gas pump </li></ul><ul><li>a gas meter </li></ul><ul><li>a pressure regulator </li></ul><ul><li>condensate drains </li></ul><ul><li>a gas scrubber (to avoid corrosion of the equipment) </li></ul><ul><li>odor control system </li></ul><ul><li>etc. </li></ul>
  37. 37. Biogas Desulfuring Desulfuring Desulfuring Desulfuring Reforming Compression Boiler CHP MCFC, SOFC Compressed tank Heat Heat o Electricity Heat Electricity F uel Biogas use Źródło: Weilinger (2008). <ul><li>un desire able compounds – cleaning of biogas </li></ul><ul><li>CO 2 </li></ul><ul><li>H 2 O </li></ul><ul><li>H 2 S </li></ul><ul><li>siloxanes </li></ul><ul><li>aromatic compounds </li></ul><ul><li>O 2 </li></ul><ul><li>N 2 </li></ul><ul><li>halogens ( fluorine (F), chlorine (Cl), etc.) </li></ul>
  38. 38. whole digestate Digestate separated into liquid and solid fractions <ul><li>Fertilizer or soil </li></ul><ul><li>coditioner </li></ul><ul><li>Waste </li></ul><ul><li>Sewage sludge </li></ul><ul><li>indigestible material, dead micro-organisms </li></ul><ul><li>90-95% of what was fed goes into the digest at e </li></ul><ul><li>N, P, K present in the feedstock will remain in the digestate (the y are more bioavailable) </li></ul><ul><li>reduce consumption of synthetic fertilisers = reduction of consumption of fossil fuels and reduce the carbon footprint </li></ul>
  39. 39. Recapitulation – environmental, energy, and economy effects Any organic waste provides feedstock for a biogas plant without increasing land requirements or competing with food and feed production. A biogas plant is a desired element of distributed systems for energy and biofuel generation because of positive environmental, energy and economic effects. <ul><li>Environmental effects: </li></ul><ul><ul><li>Reduction of GHG emission </li></ul></ul><ul><ul><li>Recycling of organic waste </li></ul></ul><ul><ul><li>Neutralization of pathogens </li></ul></ul><ul><ul><li>Deactivation of weed seeds </li></ul></ul><ul><ul><li>Biofertiliser production from digestate = reduction of synthetic fertilizer production = reduction of GHG emission </li></ul></ul><ul><ul><li>Possible processing reuse of liquid part of digestate </li></ul></ul><ul><ul><li>Protection of groundwater </li></ul></ul><ul><li>Energy effects: </li></ul><ul><ul><li>Universal biofuels </li></ul></ul><ul><ul><li>Decentralized units of energy generation </li></ul></ul><ul><ul><li>The idea of prosumer implementation (local energy production – local use) </li></ul></ul><ul><ul><li>Element of energy security </li></ul></ul><ul><li>Economic effects: </li></ul><ul><ul><li>Resultant of above benefits </li></ul></ul><ul><ul><li>Added value by converting storage waste into profitable centers of energy generation </li></ul></ul><ul><ul><li>Independence on energy import </li></ul></ul><ul><ul><li>Diversification of profit sources (green and brown certificates, selling biofertilizer, bioenergy, biofuel) </li></ul></ul>
  40. 40. Recapitulation – i nnovation opportunities Even if the development of methane fermentation processes is at an advanced stage, there are many other research pathways to improve efficiency and innovativeness, including : <ul><li>Feedstock </li></ul><ul><ul><li>improvements in the photosynthetic efficiency and nutrient requirements of energy crops </li></ul></ul><ul><ul><li>crop rotation research </li></ul></ul><ul><li>Process </li></ul><ul><ul><li>genetic engineering of microorganisms for more efficient bioconversion </li></ul></ul><ul><ul><li>optimal composition of microflora to a given substrate </li></ul></ul><ul><ul><li>specification of microorganisms to run methane or hydrogen fermentation </li></ul></ul><ul><li>Technology </li></ul><ul><ul><li>modularization, standardization of modules for biogas plant </li></ul></ul><ul><ul><li>development of micro biogas plants </li></ul></ul><ul><ul><li>biogas plants at farm level may recycle organic residues of both municipalities and the agr i -industrial sector </li></ul></ul>
  41. 41. Recapitulation – trends <ul><li>A biogas plant may be considered as an element of the future biorafinery: </li></ul><ul><ul><li>element of integration of conversion processes to exploit 100% of the value of raw material, including effective energy utilization of waste (by-products of biogas plant or biorefinery may be raw material for the other energy conversion processes) </li></ul></ul><ul><ul><li>systemic approach which integrates decentralized biogas plants in a system of local biogas production and supply to a gas network or for public fleet (logistics for transportation of waste) </li></ul></ul><ul><ul><li>integration of agricultural and communal waste utilization. </li></ul></ul>

×