Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Cómo redefinir tu organización con IA


Published on

De la misma manera que la llegada del software ha transformado todo tipo de empresas e industrias a lo largo de los últimos 20 años, la Inteligencia Artificial está empezando a redefinir todo tipo de escenarios empresariales. Descubre en esta charla los conceptos básicos de la Inteligencia artificial y descubre los casos de uso más apropiados para tu tipo de empresa. Aprende a realizar el cambio organizacional y cultural necesario para potenciar tu negocio mediante IA.

Published in: Technology
  • Hello! I can recommend a site that has helped me. It's called ⇒ ⇐ They helped me for writing my quality research paper.
    Are you sure you want to  Yes  No
    Your message goes here

Cómo redefinir tu organización con IA

  1. 1. AI for Business
  2. 2. O R G A N I Z A T I O N P L A T I N U M S P O N S O R S Thank you! C O L L A B O R A T O R S
  3. 3. @davidcsa A passion for both technology and business / marketing. In my career between business and technical leadership roles, I'm usually pointed as the technical guy in Business and the business guy in Engineering, and I'm proud of it! David Carmona General Manager, Microsoft AI
  4. 4. AI Perception Understand the world around us Cognition Reasoning on top of data Learning Learn over time without direct intervention
  5. 5. Source Gartner, 2019 Source BCG, 2017 84% 14% 75% 23%
  6. 6. Strategy Culture Leadership
  7. 7. Strategy
  8. 8. Technical Departments Business Units Employees Applications Business processes Augmentation
  9. 9. AI applications Vision Speech KnowledgeLanguage
  10. 10. Business processes Zone to Win: Organizing to Compete in an Age of Disruption (Geoffrey Moore)
  11. 11. Employees Introducing the citizen data scientist
  12. 12. Demo
  13. 13. Culture
  14. 14. Qualities of an AI-ready culture Empowering ResponsibleData-driven
  16. 16. Implementing a data hub
  17. 17. PracticesPrinciples Tools Fairness Inclusiveness Transparency Accountability Privacy and Security Reliability and Safety Responsible MLOps lifecycle External partnerships Governance Homomorphic Encryption Differential Privacy Interpret ML Secure MPC Data Drift
  18. 18. Demo
  19. 19. Leadership
  20. 20. The real AI heroes
  21. 21. 1 2 3
  22. 22. Thanks and … See you soon! Thanks also to the sponsors. Without whom this would not have been posible. O R G A N I Z A T I O N P L A T I N U M S P O N S O R S C O L L A B O R A T O R S