Upcoming SlideShare
×

# Ace Maths: Solutions Unit Two - Developing Understanding in Mathematics (pdf)

1,924 views

Published on

The solutions unit consists of the following:
General points for discussion relating to the teaching of the mathematical content in the activities.
Step-by-step mathematical solutions to the activities.
Annotations to the solutions to assist teachers in their understanding the maths as well as teaching issues relating to the mathematical content represented in the activities.
Suggestions of links to alternative activities for the teaching of the mathematical content represented in the activities

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
1,924
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
10
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Ace Maths: Solutions Unit Two - Developing Understanding in Mathematics (pdf)

1. 1. UNIT SOLUTIONSSolutions Unit Two: DevelopingUnderstanding in Mathematics From the module:Teaching and Learning Mathematics in Diverse Classrooms South African Institute for Distance Education
3. 3. AcknowledgementsThe South African Institute for Distance Education wishes to thank those below:For writing and editing the solutions guide to the module: Celeste Bortz – writer Ingrid Sapire - writer Commonwealth of Learning (COL) – for the OER instructional design template Tessa Welch – project managerFor permission to adapt the following study guide for the module :UNISA (2006). Learning and teaching of Intermediate and Senior Mathematics (ACE ME1-C).Pretoria: UNISAFor permission to use in Unit Two UNISA (2006). Study Unit 3: Learning and Teaching of Intermediate and Senior Phase Mathematics. Penlington, T (2000). The four basic operations. ACE Lecture Notes. RUMEP, Rhodes University, Grahamstown. RADMASTE Centre, University of the Witwatersrand (2006). Number Algebra and Pattern (EDUC 264).
4. 4. Solutions Unit Two: Developing Understanding in MathematicsContentsHow the solutions for the module are presented 1 Overview of content.......................................................................................................... 1 How the solutions unit is structured ................................................................................. 1 How to find alternative content material .......................................................................... 1Unit Two Solutions: Developing Understanding in Mathematics 3 Activity 2: Cognitive schema: a network of connections between ideas ......................... 3 Activity 3: Misconceptions in the addition of fractions ................................................... 5 Activity 4: Subtraction using the vertical algorithm ......................................................... 6 Activity 10: Procedures .................................................................................................... 8 Activity 12: Thinking about mathematical models......................................................... 10 Activity 14: Using Diennes’ blocks to explain grouping in tens up to 1 000 ................. 11 Activity 15: Using an abacus to think about place value ................................................ 14 Activity 16: Place value .................................................................................................. 16 Unit mathematical content summary .............................................................................. 18
6. 6. How the solutions for the module are presented the correct web address for that article. You can then check the content and see whether or not it suits your needs. When you do this search you will see that there are many sites which offer worksheets open for use by anyone who would like to use them. You need to check carefully that the material is on the right level for your class and that there are no errors in the text. Anyone can miss a typographical error and web material may not be perfect, but you can easily correct small errors that you find on a worksheet that you download. You can also use a Google image search, to find images relating to the topic you are thinking of. This usually saves you a lot of time, because you will quickly see which images actually relate to what you are thinking of and which do not. When you click on the image you like (on the screen), this will take you to the full page in which this image is actually found. In this way you can get to the worksheet of your choice. You can then copy and download the material. 2
7. 7. Solutions Unit Two: Developing Understanding in MathematicsUnit Two Solutions: Developing Understandingin MathematicsActivity 2: Cognitive schema: anetwork of connections betweenideas According to the theory of constructivism, we construct our own knowledge. This happens essentially in tow different ways. The first is that we add new knowledge to our existing knowledge. The second is that we fit the new knowledge into our existing networks of ideas, thereby changing the networks which we already have. All of this happens when we are involved in thinking actively about the new ideas, by wrestling with them, by challenging our ideas - new or old - and those of others. Through reflective thought, we can create an integrated network of connections between ideas. This represents a rich, connected understanding of ideas as opposed to isolated understandings of bits and pieces of theory. Cognitive schema: a network of connections between ideas. Select a particular skill (with operations, addition of fractions for example) that you would want your learners to acquire with understanding. Develop a cognitive schema (mental picture) for the Activity 2 newly emerging concept (or rule). You should consider the following:  Develop a network of connections between existing ideas (e.g. whole numbers, concept of a fraction, operations etc).  Add the new idea (addition of fractions for example). Draw in the connecting lines between the existing ideas and the new ideas used and formed during the acquisition of the skill. Solutions to Activity 2: Cognitive schema Below is a mindmap/metacog/web of association which could help to develop the concept of number patterns where the general term is a quadratic expression (Grade 11 level): 3
8. 8. 4 Unit Two Solutions: Developing Understanding in Mathematics Error! No text of specified style in document. Existing Ideas New Ideas NUMBER SYSTEM SQUARES OF NUMBERS We work with real numbers, 12 ;2 2 ;3 2 ;... investigation of mainly rational numbers, when first and second differences. extending number patterns. NUMBER PATTERNS NUMBERBASIC OPERATIONS PATTERNS Where the general term can beAddition, subtraction, (general term deduced using Tn = n 2 formultiplication and division to quadratic) example: 2; 5; 10; … has thehelp interpret the pattern general term Tn = n 2 + 1 THEORY IN THE GENERAL TERM LINEAR DEVELOPMENT of Where the first difference is constant Tn = an 2 + bn + c why 2a is equal to the second difference FINDING THE GENERAL TERM OF THE NUMBER PATTERNS Using simultaneous equations, for example: Triangular numbers : 1; 3; 6; 10; … There are many number patterns with the second difference constant which can be presented to the learners. We can formulate a variety of questions for the learner once the pattern has been established. Visual patterns are particularly effective because of their originality and the creative thinking which can be developed when learners spend time interpreting the patterns and converting them into mathematical formulae. Suggested links for other alternative activities: • http://kids.aol.com/homework-help/math (on line activities, lessons and other material) • http://www.davidparker.com/janine/mathpage/patterns.html • http://www.aaastudy.com/pat_by5.htm (online interacitve lessons and games) 4