Presentation ubpe comenius complet


Published on

Published in: Education, Business, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Présentation Alain ou moi
  • Présentation Alain ou moi
  • Présentation Alain ou moi
  • Présentation Solène et Noemie
  • Présentation Maxime David Celine
  • Présentation Nicolas Florian, Adrien
  • Présentation Nicolas Florian, Adrien
  • Présentation Nicolas Florian, Adrien
  • Présentation Deborah Oceane Adrien
  • Présentation Pierrick, Remi, Vincent
  • Présentation Pierrick, Remi, Vincent
  • Présentation Isabelle Pauline
  • Présentation Pascaline Laurine Camille
  • Présentation Alain ou moi
  • Présentation Alain ou moi
  • Presentation ubpe comenius complet

    1. 1. A Ballon for our school
    2. 2. The educational sectors Of Planet-sciences <ul><li>ANCS began with the sector space out but today Planet-science has horizons warger: </li></ul>Les Festiciels Robotic Astronomy Environment Space Météo
    3. 3. What planet science has already done: <ul><li>Experimental rockets: : 25 </li></ul><ul><li>Experimental balloons 300 </li></ul><ul><li>Mini-rockets: 200 </li></ul><ul><li>Micro-rockets: : 20 000 </li></ul><ul><li>Water’s Rocket H 2 O : 10 000 002 008 </li></ul>
    4. 4. Presentation of a stratospheric balloon Le ballon-sonde (inventé par Gustave Hermite en 1892) est utilisé pour faire des mesures à hautes altitudes (jusqu’à 30km). Il est utile aux domaines tels que la météorologie ou l’astronautique. The stratospheric balloon (by Gustave Hermite invented, 1892) is used to make measurement in the high height (up to 30 kilometres). It comes in handy to fields like meteorology or astronautics. Balloon Parachute Radar reflector GPS plateforme Basket O 1 metre To land gently Max 2.5kg To know the balloon position
    5. 5. The vector experimental Balloon The chain of flight supplied by the CNES Balloon We’ll use a latex ballon (1,2kg), what correspond of a balloon of 1, 5 meter and can be to 8m diameter. It’s the necessities tall for to embark a dispositive about 2,5 kg (mass of temperatures and speed probes, APN, GPS, camera and the radar) to 35km (114829 feet)altitude. Parachute We’ll use a parachute to slow down the fall after explosion of balloon. The nacelle with scientific experiments Different experiments are inside the nacelle. We have to prepare them today. The radar reflector It can give the balloon position to the plane and the air traffic. Until 8 m
    6. 6. The vector experimental Balloon The mass of the nacelle: 2,5 kg Upward speed: 5 m/s Height with explosion: 30 km Crosseddistance: 20 in 200 km Duration of a flight: 3 at 4 hours The flight of the balloon An unknown environment Extreme conditions (temperature, pressure) Risks of mastering (planes, fallen again on the ground
    7. 7. <ul><li>Trained and competent persons </li></ul>The vector experimental Balloon Regulations and security A specifications The Civil aviation
    8. 8. Specification board <ul><li>This document includes specifications for the project, everybody must comply if the ball may be dropped. Highlights: </li></ul><ul><li>weight max 2,5 kg </li></ul><ul><li>operation of equipment CNES </li></ul><ul><li>Minimum dimensions 30 cm * 30 cm </li></ul><ul><li>realistic and not dangerous experiments </li></ul><ul><li>no animals </li></ul><ul><li>method for recording-calibration and operation </li></ul><ul><li>record experimental data </li></ul>
    9. 9. The organization of the nacelle <ul><li>In the nacelle, there are: </li></ul><ul><li>- A camera (Appareil photo) </li></ul><ul><li>- Battery 4.5V (Pïles 4.5V) </li></ul><ul><li>- Thermal insulation for electricity and for batteries (isolat° thermique pour l’élec. Et piles) </li></ul><ul><li>- Wires connection attached to the outside of the nacelle, shielding (fils de connec. Fixes à l’ext. de la nacelle, blindage) </li></ul><ul><li>- GPS; connector GPS </li></ul><ul><li>- Pressure sensor </li></ul><ul><li>- Temperature sensor </li></ul><ul><li>- Light sensor </li></ul><ul><li>- Hygrometer </li></ul><ul><li>- Transmitting antenna </li></ul><ul><li>Kiwi transmitter 139,5MHz </li></ul>
    10. 10. Temperature Calibration What is calibration ? That is a comparison between a voltage and a temperature. What did we do ? We compared the temperature the thermometer gave us with the voltage the sensor showed. Why do we need a calibration ? A sensor will be in the basket of the balloon. The sensor will give a tension in fonction of temperature. We recept the tension and we have to know the temperature. That's why we do a calibration .
    11. 11. Temperature Calibration
    12. 12. Temperature Calibration Volts °C
    13. 13. Planning before the release Time before the release Area of the release Station of telemetry H-100 H-95 Implementation of the material. H-80 H-60 Constitution of the chain of flight. H-50 H-40 H-35 Decision to make the release. H-30 The beginning of the inflating. H-25 H-20 Recover from temperature, pressure, … H-10 The end of inflating, closure of the ball. Collision of the chain of flight. H-5 H-3 H Release the balloon.
    14. 14. Real time GPS tracking
    15. 15. Quelques chiffres 3000 jeunes de 8 à 25 ans Opération créée en 1992 150 établissements scolaires (primaire, collège et lycée) 200 ballons lâchés chaque année de toute la France
    16. 16. What we have to do today We are going to be divide in three Groups <ul><li>For the first group here in the library: </li></ul><ul><li>- find a name for the ballon, </li></ul><ul><li>- fill the paper to stick in the front of the nacelle </li></ul><ul><li>-find a logo for the balloon. </li></ul><ul><li>For the second group in room 109 : </li></ul><ul><li>- prepare the temperature and the pressure calibration, </li></ul><ul><li>For the third group in room 104: </li></ul><ul><li>- prepare the nacelle, </li></ul>