Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

К.И.Агладзе, НОЦ "Нанобиофизика"


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

К.И.Агладзе, НОЦ "Нанобиофизика"

  1. 1. 1-я Международная конференция "Модели инновационного развития фармацевтической и медицинской промышленности на базе интеграции университетской науки и индустрии"<br />Фотоконтроль и конструирование сердечной ткани <br />К.И. Агладзе<br />
  2. 2. Стратегия работы<br />Фото-контроль сердечной ткани<br />Фото-контролируемая сконструированная человеческая сердечная ткань<br />Сконструированная сердечная ткань на основе нановолокон<br />Сердечная ткань, полученная из плюрипотентных клеток<br />
  3. 3. Photo-controlled cardiac tissue<br />
  4. 4. N+<br />O<br />N<br />N<br />O<br />N<br />O<br />N+<br />N+<br />O<br />N<br />O<br />N<br />S<br />OH<br />N<br />N<br />O<br />O-<br />OH<br />N<br />N+<br />N<br />HO<br />O<br />O<br />Substances tested (azobenzene derivatives)<br />N<br />O<br />(1)<br />N+<br />O<br />N<br />(2)<br />(3)<br />(4)<br />(5)<br />Spontaneous Activity <br />after Washout<br />Suppression of Excitation<br />UV/Vis Response<br />Range<br />(1)<br />(2)<br />(3)<br />(4)<br />(5)<br />0 – 1.0 mM<br />0 – 0.2 mM<br />0 – 0.5 mM<br />0 – 1.0 mM<br />0 – 0.3 mM<br />
  5. 5. Light induces cis-trans or trans-cisisomerization of AC<br />Does not block channels<br />Blocks channels<br />Activation<br />Inhibition<br />trans-form<br />cis-form<br />UV (365 nm)<br />Blue (440 nm)<br />
  6. 6. Reversible suppression of excitation waves in cardiomyocyte culture<br /><Experimental Setup><br />UV+BLUE<br />BLUE (490 nm)<br />2 mW<br /><The Movie><br />UV (365 nm)<br /> 4 mW<br />UV-cutoff filter<br />UV<br />Cardiomyocytes<br />Propagation speed vs AC concentration<br />UV + BLUE<br />Upper = Blue<br />Lower = Blue & UV<br />Wave Speed / mm s-1<br />BLUE<br />The shield was removed in a course of experiment<br />(Speed: 2X)<br />[Azo-compound] / mM<br />
  7. 7. (BLUE)<br />(UV)<br />Patterning<br />(BLUE)<br />0.2s<br />0.0s<br />0.4s<br />0.6s<br />1.2s<br />2.8s<br />3.8s<br />0.8s<br />(UV)<br />(Fluorescence Intensity)<br />(Speed: 1X)<br />10 mm<br />Artificial Pacemaker<br />10 mm<br />(Speed: 2X)<br />10 mm<br />(time interval = 0.2 sec)<br />
  8. 8. 10 sec<br />Reversible Suppression of Excitation in a Whole Heart<br />(Langendorf preparation of mouse heart)<br />Excitation Monitoring in a Whole Heart Preparation<br /><<Fluorescence image produced by membrane-potential sensitive dye>><br />(Time interval = 0.1 sec)<br /><Control><br />Intensity / a.u.<br /><WITH Azo-compound><br />Measured Point<br />(Speed: 1X(looped) )<br />
  9. 9. Effect of AzoTab on action potential formation <br />in rat neonatal myocytes<br />60<br />40<br />control<br />20<br />AzoTab 0.5 mM (after 6 min.)<br />AzoTab 0.5 mM ( after 8 min.)<br />0<br />Membrane potential, mV<br />AzoTab 0.5 mM + UV<br />-20<br />-40<br />-60<br />-80<br />0<br />200<br />400<br />600<br />800<br />1000<br />Time, ms<br />
  10. 10. 150<br />100<br />50<br />0<br />20 sec<br />20 sec<br />Specific versus non-specific binding<br />Switch between UV – Blue light<br />100<br />Counts / a.u.<br />Speed / mm s-1<br />(Addition of AzoTAB)<br />50<br />Addition and washout data <br />Laser Raman spectrometer: Nanofinder 30<br />Laser: 532 nm<br />Brown: 0.5 mM AzoTAB solution of Tyrode<br />Blue: (1) Exchange medium to 0.5 mM AzoTAB solution of Tyrode<br /> (2) Exposure blue light (4 mW, 60 sec)<br /> (3) Rinsing in new Tyrode 3 times under blue light<br /> (4) Dried up<br />Violet: (1) Exchange medium to 0.5 mM AzoTAB solution of Tyrode<br /> (2) Exposure blue light (4 mW, 60 sec)<br /> (3) Exposure UV light (7 mW, 60 sec)<br /> (4) Rinsing in new Tyrode 3 times under UV light<br /> (5) Dried up<br />Black: (1) Rinsing in new Tyrode<br /> (2) Dried up<br />Wash out<br />0<br />Speed / mm s-1<br />time<br />1000<br />1200<br />1400<br />1600<br />1800<br />2000<br />Raman Shift / cm-1<br />time<br />: BLUE (4 mW)<br />: BLUE (4 mW) + UV (6 mW)<br />
  11. 11. Insect’s dorsal vessel<br />(Photo)<br /><CtenoplusiaAgnata><br />[AzoTAB] = approx. 0.2 mM<br />(Insect_100416.wmv)<br />(Dorsal Vessel.wmv)<br />(Movie)<br />
  12. 12. Nanofiber-based engineered cardiac tissue<br />
  13. 13. Polymer nanofibers as a tool for cardiac tissue engineering<br />Methods: <br />Cells guided by nanofibers on solid substrate<br />Cells guided by substrate-free nanofibers<br />Advantages: <br />Controlled alignment of cells<br />Precise positioning of the cells<br />Porous 3D constructs<br />
  14. 14. Fabrication of Polymer Nanofibers by Electrospinning<br />Electrospinning Apparatus<br />Material:<br />13% concentration solution of PMGI (polymethylglutarimide) in cyclopentanone with adding of ionic surfactant (Sodium dodecyl sulfate, 0.48 g/l) and Rhodaminedye (0.1%)<br />Working parameters:<br />Voltage - 8kV;<br />Flow rate - 1.5-2.0 ml/h;<br />Spraying time - 2-15 seconds depending on desired positioning density of nanofibers;<br />Working distance - 10 cm;<br />Collector – Al foil, 100 µm<br />6 mm<br />
  15. 15. Transferring of nanofibers by micro contact printing<br />PDMS layer with polymer nanofibers as a stamp for microcontactprinting<br />Collector with nanofibers<br />Clean glass substrate<br />PDMS layer cleaned with ethanol<br />Stage<br />2000C<br />PDMS (polydimethylsiloxane) layers with polymer nanofibers<br />Glass substrate covered with PMGI nanofibers after cooling and separation<br />
  16. 16. Cardiac tissue culture being grown on nanofibers-free solid substrate<br />Cardiac tissue culture being grown on solid substrate covered with nanofibers<br />
  17. 17. Cardiac tissue culture being grown on solid substrate covered with nanofibers<br />Fibers, Rhodamin<br />Actin, Alexa Fluoro 488<br />Nuclei, DAPI<br />
  18. 18. Functionality of Cardiac Monolayers<br />2<br />1<br />3<br />5<br />4<br />Positions of electrode during stimulation<br />Across fibers – 0.2 sec; Along fibers – 0.36 sec; Ratio – 1.8<br />Fluo-4 stained<br />1<br />2<br />3<br />4<br />5<br />6<br />7<br />8<br />9<br />10<br />
  19. 19. Functionality of Cardiac Monolayers<br />2<br />1<br />Distance, mm<br />Fibers’ direction<br />Time, s<br />Horizontal direction - along fibers<br />Vertical direction - across fibers<br />
  20. 20. Anisotropy of Cardiac Tissue Culture<br />
  21. 21. Precise Positioning of the Cells<br />(1) Collagen, Type I from Calf Skin + HFP (Hexafluoro-2-propanol) <br />(2) PMGI+ Fibronectin<br />(3) PMGI+ Collagen<br />Collagen<br />Collagen<br />
  22. 22. Precise Positioning of the Cells<br />Single Collagen Fiber<br />Porous Collagen Fiber Net<br />
  23. 23. Precise Positioning of the Cells<br />Group of Collagen Fibers<br />Fluo-4 stained<br />
  24. 24. Preparation of Polymeric Scaffold for 3D Culture Engineering<br />Cover with<br />fibronectin<br />PDMS Holder with<br />Nanofibers <br />Collector<br />Seeding cells<br />1<br />PDMS layer cleaned with ethanol<br />2<br />Stage<br />Porous PMGI Fiber Net<br />Single Cell – Single Fibre Interaction<br />
  25. 25. 3D Cardiac Tissue Engineering<br />Porous PMGI Fiber Net<br />
  26. 26. Cardiac tissue derived from IPS cells<br />
  27. 27. Cardiomyocyte layers with contraction and propagating waves<br />Optical mapping<br />Immunostaining<br />Mouse ES derived <br />Human iPS derived<br />α-actinin (cardiac marker) DAPI<br />
  28. 28. Konstantin Agladze Lab<br />Biophysics, Non-linear Science<br />Chemical tools to control the ion channel activity<br />• Cell membrane architecture/function and meso-control<br />• Ion channel/transporter/receptor with bio-functional chemicals/materials<br />