Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

PhD ISG, Seminar by Dijmedo Kondo, 26 April 2017

112 views

Published on

Homogenization of ductile porous materials with pressure-sensitive matrix: theoretical formulation and numerical bounds.

Published in: Education
  • Be the first to comment

PhD ISG, Seminar by Dijmedo Kondo, 26 April 2017

  1. 1. HOMOGENIZATION OF DUCTILE POROUS MATERIALS WITH PRESSURE-SENSITIVE MATRIX: THEORETICAL FORMULATION AND NUMERICAL BOUNDS , . , . . Institut Jean Le Rond d’Alembert, UMR 7190 CNRS, UPMC, France La Sapienza, Roma - April 26, 2017 CHENG et al. (LML, France) Presentation EMMC14 - Goteborg EMMC14 - Goteborg, Aug. 27-29, 2014 1 / 18
  2. 2. Outline Introduction and motivation 1 Limit analysis of porous material matrix 2 Conclusions CHENG et al. (LML, France) Presentation EMMC14 - Goteborg EMMC14 - Goteborg, Aug. 27-29, 2014 2 / 18
  3. 3. Introduction Physical mechanisms of ductile fracture of metals Ductile fracture in metals Modifications of the Gurson’s model (Tvergaard, 1982; Tvergaard and Needleman, 1984; Needleman and Tvergaard, 1985). Weck and Wilkinson (2008). In-situ SEM images of the deformation sequence of an aluminum alloy 5052. Modeling ductile behavior of porous materials Limit analysis and non-linear homogenization approaches Gurson, (1977); Ponte Castaneda, (1991); Michel and Suquet, (1992); Guo et al., (2008); Anoukou et al., (2016). Gurson’s model (1977) F = ⌃2 eq 2 0 + 2p cosh ✓ tr⌃ 2 0 ◆ 1 p2 D = @F @⌃ ˙p = (1 p)trDwith ( = 0 if F(⌃ < 0) 0 if F(⌃ = 0) Strength criterion Normality rule Evolution law nucleation & growth of voids porosity (Puttick, 1960; Rogers, 1960, McClintock 1968, Rice and Tracey 1969)
  4. 4. Carte min ral Carte de porosit <5 12,5 20 27,5 (-) 250 µm LML, UMR8107 CNRS, USTL Colloque SOIZE 2010 01-02 July 18 / 18 porosity plays a crucial role Geomaterials : example of argillite with a matrix (known to be pressure sensitive)
  5. 5. Presentation of the model Experimental evidences of the behavior of chalk materials 30 35 40 Contrainteisotrope(MPa) 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 Déformation axiale (10-3) Contrainteisotrope(MPa) phase "élastique" phase plastique phase "élastique" "pore collapse" q l' espace des contraintes p' / q p' (contrainte effective moyenne) = (σ'1 + 2 σ'3) / 3 q (contrainte déviatorique) = σ'1 - σ'3 cisaillement "pore collapse" p' traction Complex phenomenological multi-surface-based plasticity models are usually considered, but they are not easy for numerical implementation Challenge : proposal of a constitutive model based on a micromechanically derived single yield surface
  6. 6. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives ‚ Geomaterials and some ductile metals pressure-sensitive and Lode angle dependen (see for instance Xue 2007 ; Bai and Wierzbicki 2008 and 2010) ‚ Guo et al. 2008, have propose a strength criterion of a porous solid with pressure-sensitive dilatant matrix ‚ theoretical modelling of porous solids with a matrix obeying a pressure and Lode angle dependent plastic criterion : Mohr-Coulomb criterion F(‡) = ‡eq ` –(◊L )(‡m ´ H) § 0 –(◊L ) = sin(„) ’(◊L ) , H = C cot(„) ’(◊L ) = 1? 3 cos(◊L ) ´ 1 3 sin(„) sin(◊L ) ◊L = ´1 3 arcsin ´? 27J3 2‡3 eq ¯ ´30˝ § ◊L § 30˝ Kokou Anoukou EMMC-14 Sweden 3 / 16
  7. 7. Kinematical Limit Analysis as an appropriate tool to predict strength spherical void eR iR .v xD Perfectly plastic matrix Strength of the solid phase defined by a the convex set Gs of admissible stress states Gs = {σ, fs (σ) ≤ 0} Dual definition by means of the support function πs(d) of Gs πs (d) = sup(σ : d, σ ∈ Gs ) πs(d) represents the maximum "plastic" dissipation Séminaire LMA - Marseille (USTL) Micromécanique et Milieux poreux 02/02/2010 4 / 25
  8. 8. Methodology Kinematical Limit Analysis again Macroscopic counterpart of πs(d) in the absence of interface effect Πhom (D) = (1 − f) inf v∈V(D) πs(d) s with d = 1 2 (grad v +t grad v) Support function of the domain Ghom of macroscopic admissible stresses Πhom (D) = sup(Σ : D, Σ ∈ Ghom ) Ghom : domain of macroscopic admissible stresses limit stress states at the macroscopic scale : Σ = ∂Πhom/∂D Séminaire LMA - Marseille (USTL) Micromécanique et Milieux poreux 02/02/2010 5 / 25
  9. 9. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Mohr-Coulomb criterion and the associated plastic dissipation function – Perfect plasticitywith Mohr-Coulomb strength criterion: In terms of principal stresses the M-C criterion reads F(‡) = sup i,j P t1,2,3u t| ‡i ´ ‡j | `(‡i ` ‡j ) sin(„)u ´ 2C cos(„) = 0 Kokou Anoukou EMMC-14 Sweden 4 / 16 By means of the stress invariants F(‡) = ‡ s eq ` –(◊L )(‡m ´ H) § 0 –(◊L ) = 1 3 ’ in ( ( ◊ „ ) ) , H = C cot(„) ’(◊L ) = ?1 3 cos L (◊L ) ´ ´? sin 27 ( J „) ¯ sin(◊L ) 1 3 ◊L = ´ arcsin 3 2‡3 eq ´30˝ § ◊L § 30˝ fi(d) = `8, if tr(d) † (|d1 | ` |d2 | ` |d3 |) sin(„) fi(d) = H.tr(d), if tr(d) • (|d1 | ` |d2 | ` |d3 |) sin(„)
  10. 10. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Atrialvelocityfieldforthekinematicallimitanalysis A first step of the analysis: ice of a relevant trial velocity field that is one which must be kinematically admissible (K.A) and comply with the plastic admissibility (P.A.) condition. A -parameter velocity field basedon , CR Mecanique is considered: v(x) = A0 ´b r ¯3— x ` A¨x with — = 3 ´ ‘ sin(„) 3(1 ` ‘ sin(„)) , and A = A1 ` efl befl ` eÏ beÏ ˘ ` A2ez bez (9) ‚ Kinematic admissibility (K.A.) condition : v(x = ber ) = D.x # fl(A0 ` A1) = flDfl z(A0 ` A2) = zDz ñ $ & % A1 = Dm ´ Deq 2 sign(J3) ´ A0 A2 = Dm ` Deqsign(J3) ´ A0 ‚ Let us recall the plastic admissibility (P.A.) condition tr(d) • (|d1 | ` |d2 | ` |d3 |) sin(„) Kokou Anoukou EMMC-14 Sweden 6 / 16
  11. 11. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Minimization problem and resolution (see Anoukou et al. JMPS Part I, 91, 145-171 – Minimization problem P := $ ’’’’’& ’’’’’% ⇧(D) = min v xfi(d)y⌦ s.c. A1 = Dm ´ Deq 2 sign(J3) ´ A0 (a) A2 = Dm ` Deqsign(J3) ´ A0 (b) dm • Gi (c) which by considering the limit load relation ⌃:D =⇧(D), translates in the following auxiliary minimization problem P˚ : P˚ := $ ’’’’’& ’’’’’% min v ` xfi(d)y⌦ ´ 3⌃mDm ` ⌃eqDeq ˘ s.c. A0 ` 1 3 (2A1 ` A2) = Dm (a) 2 3 (A1 ´ A2) = Deqsign(J3) (b) xdmy⌦´Ê • xGiy⌦´Ê (c) with xfi(d)y⌦ = 3(1 ´ f )H xdmy⌦´Ê = 3H ” Dm(1 ´ f ) ´ A0 ` f 1´— ´ f ˘ı Kokou Anoukou EMMC-14 Sweden 8 / 16
  12. 12. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Minimization problem : Lagrangian method and Karush-Kuhn-Tucker (KKT) conditions – Lagrangian method and Karush-Kuhn-Tucker (KKT) conditions ` xdmy⌦´Ê´xGiy⌦´Ê ˘ L(v, ⁄) = ´3(1´f )H xdmy⌦´Ê`3⌃mDm`⌃eqDeq`⁄(1-f) where ⁄ is the Lagrange-KKT multiplier. or explicitly using (1 ´ f ) xdmy⌦´Ê = “ Dm(1 ´ f ) ´ A0 ` f 1´— ´ f ˘‰ , we have : L(A0, Dm, Deq, ⁄) = ´(3H ´ ⁄) ´ (1 ´ f )Dm ´ (f 1´— ´ f )A0 ¯ ` 3⌃mDm` ⌃eqDeq ´ ⁄Ji(A0, Deq) with Ji(A0, De) = (1 ´ f ) xGiy⌦´Ê The KKT conditions are given in system (S) as follows : (S) := $ ’’’’’’& ’’’’’’% @L @A0 = 0, @L @Dm = 0, @L @Deq = 0 @L @⁄ • 0 ô xdmy⌦´Ê • xGiy⌦´Ê ⁄ • 0 ⁄(xdmy⌦´Ê ´ xGiy⌦´Ê) = 0 ô ⁄ = 0 or xdmy⌦´Ê = xGiy⌦´Ê Kokou Anoukou EMMC-14 Sweden 9 / 16
  13. 13. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Parametric form of the strength criterion and void growth evaluation – Parametric form of the strength criterion F(Σm, Σeq) := $ ’’’’’’& ’’’’’’% Σm C = ` 1 ´ f ˘Ψm 3γ ` f 1´β ´ f ˘ ` Ψm Σeq C = ` f 1´β ´ f ˘Ψeq γ ` f 1´β ´ f ˘ ` Ψm with Ψm = ω 1 β ´1 2 ˜ 1 β ´ I(ω) ` m ¯ ` ωI1 (ω) ¸ Ψeq = ω 1 β 4β ˜ β ´ 1 β ´ I(ω) ` eq ¯ ´ ωI1 (ω) ¸ – Void growth : evolution law 9f = 3 Deqω 2β ´ f 1´β ´ f ¯ or 9f = 3Dm(1 ´ f ) ´ 3Deqω 1 β 4β I(ω) Kokou Anoukou EMMC-14 Sweden 11 / 16
  14. 14. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Some features of the obtained criterion f =25% f =10% f =5% C = 1, f = 20 ° -15 -10 -5 0 -4 -2 0 2 4 6 Sm Sr-Sz f=0.01° f=1° f=10° C = 1, f = 25 % -2 -1 0 1 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Sm Sr-SzC = 1, f = 10 %, f = 10 ° J3 < 0 HqL = 30 °L J3 > 0 HqL = -30 °L -5 -4 -3 -2 -1 0 1 2 0.0 0.5 1.0 1.5 2.0 Sm Seq Kokou Anoukou EMMC-14 Sweden 12 / 16 Few comments on cap models
  15. 15. Numerical assessment
  16. 16. Introduction – motivation Derivation of the macroscopic strength criterion Results and discussion Conclusion and perspectives Numerical bounds (Pastor et al. 2010 6 JMPS, Part II) – Finite element discretization combined with a non-linear optimization procedure using MOSEK software – Numerical results The lower and upper bounds of the macroscopic criterion are Kokou Anoukou EMMC-14 Sweden 13 / 16
  17. 17. 10 8 6 4 2 0 2 4 2 1 0 1 2 3 = 5 f = 1% f = 5% f = 10% ⌃m/c ⌃gps/c Lower bound Upper bound New criterion (a) 16 14 12 10 8 6 4 2 0 2 4 4 2 0 2 4 = 10 f = 1% f = 25% ⌃m/c ⌃gps/c Lower bound Upper bound New criterion (b) Comparison of the derived strength criterion predictions with the numerical bounds for two fixed values of friction angle and several values of porosity: (a) = 5 , f = 1%, 5% and 10%, (b) = 10 and f = 1% and 25%.
  18. 18. 16 14 12 10 8 6 4 2 0 2 4 6 4 2 0 2 4 f = 1% = 10 = 5 ⌃m/c ⌃gps/c Lower bound Upper bound New criterion (a) 12 10 8 6 4 2 0 2 4 2 0 2 4 f = 10% = 20 = 5 ⌃m/c ⌃gps/c Lower bound Upper bound New criterion (b) Comparison of the derived strength criterion predictions with the numerical bounds, for fixed porosity f = 10%and two friction angles =5 and 20 .
  19. 19. Conclusions micromechanical procedure - . The approach The criterion illustrated and validated by comparison with . Extension to saturated geomaterials by means of an effective stress concept Implemen t and structural computations with the complete model Extension to nanoporous materials (joint work with Prof. G. Vairo (Roma 2) : co-supervised PhD Thesis of Stella Brach (MOM, 2016; IJP, 2017) CHENG et al. (LML, France) Presentation EMMC14 - Goteborg EMMC14 - Goteborg, Aug. 27-29, 2014 18 / 18
  20. 20. Introduction Can porous strength criteria be effectively used at sub-micron lengthscales? Hutchinson (2000), International Journal of Solids and Structures, 37, pp. 225-238. At nanoscales, mechanical features are dramatically different from those of the same material at a larger lengthscale Biener et al., (2005), (2006); Cheng et al., (2013); Hakamada et al., (2007); Hodge et al., (2007)
  21. 21. SEM of a nanoporous alumina (Kustandi et al., 2010) Organic or inorganic solid matrix a  100 nmUniform void size High specific surface area [Hodge et al. (2007)] [Volkerta et al. (2006)] Nano-indentation test
 Fan and Fang, (2009) Ligament size [nm] Yieldstrength[GPa] Void-size effects Ligament size a  100 nm Some experimental observations on anoporous materials Zhang et al., (2007, 2008, 2010); Goudarzi et al., (2010); Moshtaghin et al., (2012); Dormieux and Kondo, (2013). Limit analysis Dormieux and Kondo, (2010); Monchiet and Kondo, (2013). Non-linear homogenization Strength Properties of Nanoporous materials : A molecular Dynamics based approach by S. Brach, L. Dormieux, D. Kondo & G. Vairo (work with Univ. Tor Vergata; MOM 2016)
  22. 22. Stella Brach PhD dissertation, 29 November 2016 Introduction Non-linear homogenization Molecular Dynamics Limit Analysis Conclusions Objective: strength properties nanoporous samples at the nanoscale and void-size effects. State-of-the-art: Marian et al. (2004, 2005), Traiviratana et al. (2008), Zhao et al. (2009), Bringa et al. (2010), Tang et al. (2010), Mi et al. (2011). Material strength under uniaxial/hydrostatic tests; Few attention has been paid to void-size effects. X Y Z x y z a0 a0/2 < 100 > [100] [010] [001] b L 2R L L a0/2 Single-crystal/single-void FCC Aluminium Fixed values of porosity and void sizes in 0.271 nm - 3.247 nm Periodic boundary conditions Different deformation paths and triaxiality levels Simulations carried out in LAMMPS Brach, S., Dormieux, L., Kondo, D., & Vairo, G. (2016b). Mechanics of Materials, 101, 102-117. 16 / 39 Molecular Dynamics
  23. 23. Stella Brach PhD dissertation, 29 November 2016 Conclusions Void-size effects: overall expansion of strength domain as void size reduces A significant dependency on the three stress invariants I1, J2, ✓⌃ −6 −4 −2 0 2 4 6 8 10 12 14 16 18 0 1 2 3 4 5 6 7 8 9 10 [GPa] r[GPa] Bulk L/B=30 L/B=40 L/B=70 L/B=100 L/B=110 Bulk TXE ( =0) SHR ( = /6) TXC ( = /3) R = 0.812 nm R = 1.082 nm R = 1.894 nm R = 2.706 nm R = 2.977 nm Void-size effects: shape transition in deviatoric profiles r = 2 GPa r = 4 GPa r = 6 GPa r = 8 GPa L/B=20 L/B=40 L/B=60 L/B=70 SHR⌃ SHR⌃ SHR⌃ SHR⌃ SHR⌃ SHR⌃ TXC⌃ TXC⌃ TXC⌃ TXE⌃ TXE⌃ TXE⌃ ✓D = ⇡ 6 ✓D = ⇡ 3 ✓D = 0 ✓⌃ = ⇡/3 ✓⌃ = ⇡/6 ✓⌃ = 0 r=2 GPa r=4 GPa r=6 GPa r=8 GPa 210 60 90 120 150 180 L/B=20 L/B=40 L/B=60 L/B=70 r=2 GPa r=4 GPa r=6 GPa r=8 GPa 210 60 90 120 150 180 L/B=20 L/B=40 L/B=60 L/B=70 r=2 GPa r=4 GPa r=6 GPa r=8 GPa 60 90 120 150 180 L/B=20 L/B=40 L/B=60 L/B=70 r=2 GPa r=4 GPa r=6 GPa r=8 GPa 210 60 90 120 150 180 L/B=20 L/B=40 L/B=60 L/B=70 R = 1.082 nm R = 1.624 nm R = 2.165 nm R = 0.541 nm= 1.353 nm, p = 1% ⇣ = I⌃ 1 p 3 , r = q 2J⌃ 2 , cos 3✓⌃ = 3 p 3J⌃ 3 2J⌃ 2 3/2 Brach, S., Dormieux, L., Kondo, D., & Vairo, G. (2016b). Mechanics of Materials, 101, 102-117. Strength domain of a nanoporous nanoscale sample

×