Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

RFID Automation


Published on

Published in: Business, Technology
  • Be the first to comment

  • Be the first to like this

RFID Automation

  1. 1. <ul><li>ELG 4135 </li></ul><ul><li>Electronics ΙΙΙ Project </li></ul><ul><li>Professor: Riadh Habash </li></ul><ul><li>TA: Mohamad Eid </li></ul><ul><li>TA: Peng He </li></ul>
  3. 3. Manufacturer Information serial#, pressure, model Content, …etc Application Software Asset Management Information Inventory #, receipt, date, current location, …etc Inspection Information repair, date and location of last inspection and retest, Safety data, …etc Other data can also be programmed on request Cylinder Filling Information Content, date of last fill, place of last fill, fill counter, … etc Report Generation Comprehensive reporting, Current status, historical logs, …etc The Problem …
  4. 4. Constructing The Loop Distributor Customer Supplier
  5. 5. Existing Technologies <ul><li>Component cables or Electrical wires  </li></ul><ul><li>WiFi </li></ul><ul><li>Infrared Signals </li></ul><ul><li>Bluetooth </li></ul><ul><li>Home RF </li></ul><ul><li>RFID </li></ul>
  6. 6. WiFi 802.11 <ul><li>Wi-Fi setup consists of several Access Points (APs) and several clients. Each AP broadcasts its Service Set Identifier (SSID) through packets called beacons </li></ul><ul><li>High power consumption </li></ul><ul><li>Needs encryption for security </li></ul><ul><li>Interruption can occur from 2.4 GHz mobile phones and microwave ovens </li></ul><ul><li>Adapters must be installed on each client </li></ul><ul><li>High data rate </li></ul><ul><li>Low interference </li></ul><ul><li>Products widely available in the market   </li></ul>Disadvantages Advantages
  7. 7. Bluetooth <ul><li>Radio frequency standard </li></ul><ul><li>Max distance 32 feet </li></ul><ul><li>Not the cheapest </li></ul><ul><li>Low interference because of the low power consumption </li></ul><ul><li>Automatic recognition </li></ul><ul><li>Each transmission consumes 1 milliwatt of power   </li></ul>Disadvantages Advantages
  8. 8. Infrared Signals <ul><li>Light waves of a lower frequency than human eyes can receive and interpret </li></ul><ul><li>&quot;line of sight&quot; technology </li></ul><ul><li>&quot;one to one&quot; technology </li></ul><ul><li>Speed of data rate transmission is lower than typical wired transmission </li></ul><ul><li>Interference between devices is uncommon </li></ul>Disadvantages Advantages
  9. 9. Home RF <ul><li>Radio frequency standard </li></ul><ul><li>Blocked by common materials: people, walls </li></ul><ul><li>Short range </li></ul><ul><li>Speed of data rate transmission is lower than typical wired transmission </li></ul><ul><li>Enhances mobility </li></ul><ul><li>No transmitter interaction/interference </li></ul><ul><li>Low Cost </li></ul>Disadvantages Advantages
  10. 10. Why is RFID better than using bar codes? <ul><li>Bar codes are line-of-sight technology, which means people usually have to orient the bar code towards a scanner for it to be read. Radio frequency identification, by contrast, doesn’t require line of sight . </li></ul><ul><li>RFID tags can be read as long as they are within range of a reader. </li></ul><ul><li>Bar codes have other shortcomings as well. If a label is ripped, soiled or falls off, there is no way to scan the item. </li></ul><ul><li>Standard bar codes identify only the manufacturer and product, not the unique item. The bar code on one cylinder is the same as every other, making it impossible to identify which one might pass the inspection. </li></ul>
  11. 11. RFID – An Idea Whose Time Has Come <ul><li>Radio Frequency Identification (RFID) is a technology with several aspects that correspond to different applications. </li></ul><ul><li>The common element of all RFID applications is the use of radio signals to sense the presence of a tagged object and, in most instances, to retrieve data stored on the object. </li></ul>
  12. 12. What is RFID? (Continued) <ul><li>From the sensing point of view, the many RFID applications are quite diverse, including </li></ul><ul><ul><li>Radar </li></ul></ul><ul><ul><li>Access control systems and smart cards </li></ul></ul><ul><ul><li>Automatic toll collection </li></ul></ul><ul><ul><li>Asset tracking (e.g., railroad cars) </li></ul></ul><ul><ul><li>Animal tagging, including implants </li></ul></ul><ul><ul><li>Hazardous substance tracking </li></ul></ul><ul><ul><li>Inventory and supply chain tracking </li></ul></ul>
  13. 13. RFID Components <ul><li>RFID transponder or an RFID tag : </li></ul><ul><li>There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip </li></ul><ul><li>Tag is attached to an antenna The antenna enables the chip to transmit the identification information to a reader. </li></ul><ul><li>The reader converts the radio waves reflected back from the RFID tag into digital information that can then be passed on to computers that can make use of it. </li></ul><ul><li>Friendly software </li></ul>
  14. 14. Components of an RFID system Figure (1)
  15. 15. Example RFID Tags Labels with RFID tags embedded 2.5 mm coil-on-chip RFID tag for close proximity applications (Maxell)
  16. 16. Gas Cylinders
  17. 17. SIGAS SOLUTION Empty Full
  18. 18. RFID High level System Design
  19. 19. 125 KHz Low Pass Filter
  20. 20. 3 rd Order Butterworth LPF
  21. 21. Frequency Response of Butterworth Filter <ul><li>All frequencies above 912 MHz are filtered out. </li></ul><ul><li>Phase shift at 912 MHz is about -100 degrees. </li></ul>
  22. 22. Input and Output Signals of 912 MHz LPF
  23. 23. Half Bridge Power Amplifier <ul><li>Voltage Gain = 0.816 </li></ul><ul><li>Current Gain = 108 </li></ul><ul><li>Power Gain = 88 </li></ul><ul><li>Cross over distortion </li></ul><ul><li>avoided by 2 diodes </li></ul>
  24. 24. Frequency Response of Power Amplifier <ul><li>Output voltage is the same for all frequencies. </li></ul><ul><li>Output current does not depend on frequency. </li></ul><ul><li>Therefore Power Gain is constant. </li></ul>
  25. 25. Transmitted Power <ul><li>Input voltage = 1.549 V </li></ul><ul><li>Input current = 20.418 mA </li></ul><ul><li>Input Power = 31.6 mW </li></ul><ul><li>LPF output voltage = 0.49 V </li></ul><ul><li>LPF output current = 0.074 mA </li></ul><ul><li>LPF output power = 36.3 µW </li></ul><ul><li>Amplifier output voltage = 0.4 V </li></ul><ul><li>Amplifier output current = 8 mA </li></ul><ul><li>Amplifier output power = 3.2 mW </li></ul>
  26. 26. Read Range <ul><li>Assumptions: </li></ul><ul><li>No propagation loss </li></ul><ul><li>Transmission antenna gain is 1 </li></ul><ul><li>No noise !!!! </li></ul><ul><li>P R = P T G R (c/f) 2 /(4πr) 2 </li></ul><ul><li>For P R = 1 pW </li></ul><ul><li> r 2 = P T G R (c/f) 2 /P R (4π) 2 </li></ul><ul><li> = [3.2 x 10 -3 x 9 x 10 16 ] G R / [(912) 2 x 10 12 x 10 -12 x(4π) 2 ] </li></ul><ul><li> = 2.193 x 10 6 G R </li></ul><ul><li> r = 1.48 (G R ) 1/2 Km </li></ul>
  27. 27. Demodulator Circuit
  28. 28. How the circuit works <ul><li>Assuming the tag uses ASK modulation: </li></ul><ul><li>1 is represented by a 5V sine wave </li></ul><ul><li>0 is represented by 1V sine wave </li></ul><ul><li>Comparator gives 1 if the envelope detector output is higher than 2V and 0 if envelope detector output is less than 2V </li></ul><ul><li>For a 1 followed by 0, the capacitor will discharge starting from 5V until output falls below 2 V and the comparator output will change to 0. </li></ul>
  29. 29. Demodulation Results (1) <ul><li>Assuming the input is all 1’s, the amplitude of the modulated signal is always 5V. So the comparator output will always be 1. </li></ul>
  30. 30. Demodulation Results (2) <ul><li>Assuming the input is a series of 1 followed by 0, the modulated signal amplitude will alternate between 5V and 1V. So we can model this case by applying an input signal of lower frequency to give the envelope detector enough time to discharge. </li></ul>
  31. 31. Future Improvements <ul><li>Increasing power efficiency: </li></ul><ul><ul><li>Matching antenna impedance </li></ul></ul><ul><ul><li>Improving the LPF and power amplifier </li></ul></ul><ul><ul><li>Including noise considerations in circuit design </li></ul></ul><ul><li>Adding security codes to the transmitted signal </li></ul><ul><li>Using an advanced demodulation circuit to decode other types of modulated signals. </li></ul>
  32. 32. References <ul><li>Han05 </li></ul><ul><ul><li>Gerhard Hancke. A practical relay attack on ISO 14443 proximity cards, 2005. . </li></ul></ul><ul><li>Lee03 </li></ul><ul><ul><li>Youbok Lee. Antenna circuit design for RFID application. Microchip Technology, Application Note AN710, DS00710C, 2003. . </li></ul></ul><ul><li>Sch05 </li></ul><ul><ul><li>Bruce Schneier. RFID passport security revisited. Schneier on Security: A weblog covering security and security technology, 2005. . </li></ul></ul>
  33. 33. References <ul><li>TI03 </li></ul><ul><ul><li>S4100 multi-function reader module data sheet. Texas Instruments, Module 11-06-22-715, 2003. . </li></ul></ul><ul><li> , 2006 </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul>
  34. 34. Thank you Questions ?