Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.



Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this


  1. 1. Expert Systems I Michal Pěchouček Gerstner Laboratory for Intelligent Decision Making and Control
  2. 2. Expert System Functionality <ul><li>replace human expert decision making when not available </li></ul><ul><li>assist human expert when integrating various decisions </li></ul><ul><li>provides an ES user with </li></ul><ul><ul><li>an appropriate hypothesis </li></ul></ul><ul><ul><li>methodology for knowledge storage and reuse </li></ul></ul><ul><li>border field to Knowledge Based Systems, Knowledge Management </li></ul><ul><li>knowledge intensive × connectionist </li></ul><ul><li>expert system – software systems simulating expert-like decision making while keeping knowledge separate from the reasoning mechanism </li></ul>
  3. 3. Expert Systems Classification <ul><li>Unlike classical problem solver (GPS, Theorist) Expert Systems are weak , less general, very case specific </li></ul><ul><li>Exert systems classification : </li></ul><ul><ul><li>Interpretation </li></ul></ul><ul><ul><li>Prediction </li></ul></ul><ul><ul><li>Diagnostic </li></ul></ul><ul><ul><li>Design & Configuration </li></ul></ul><ul><ul><li>Planning </li></ul></ul><ul><li>Monitoring </li></ul><ul><li>Repair & Debugging </li></ul><ul><li>Instruction </li></ul><ul><li>Control </li></ul>
  4. 4. Underlying Philosophy <ul><li>knowledge representation </li></ul><ul><ul><li>production rules </li></ul></ul><ul><ul><li>logic </li></ul></ul><ul><ul><li>semantic networks </li></ul></ul><ul><ul><li>frames, scripts, objects </li></ul></ul><ul><li>reasoning mechanism </li></ul><ul><ul><li>knowledge-oriented reasoning </li></ul></ul><ul><ul><li>model-based reasoning </li></ul></ul><ul><ul><li>case-based reasonig </li></ul></ul>
  5. 5. Expert System Architecture inference engine world model knowledge base user knowledge base editor preceptors explanation subsystem explanation subsystem
  6. 6. Rule-Based System <ul><li>knowledge in the form of if condition then effect (production) rules </li></ul><ul><li>reasoning algorithm: </li></ul><ul><ul><ul><ul><li>(i) FR  detect(WM) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>(ii) R  select(FR) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>(iii) WM  apply R </li></ul></ul></ul></ul><ul><ul><ul><ul><li>(iv) goto (i) </li></ul></ul></ul></ul><ul><li>conflicts in FR: </li></ul><ul><ul><li>first, last recently used, minimal WM change, priorities </li></ul></ul><ul><li>incomplete WM – querying ES (art of logical and sensible querying) </li></ul><ul><li>examples – CLIPS (OPS/5), Prolog </li></ul>
  7. 7. Rule-Based System Example <ul><li>here  fine </li></ul><ul><li>not here  absent </li></ul><ul><li>absent and not seen  at home </li></ul><ul><li>absent and seen  in the building </li></ul><ul><li>in the building  fine </li></ul><ul><li>at home and not holiday  sick </li></ul><ul><li>here and holiday  sick </li></ul><ul><li>not here, in the building  fine </li></ul><ul><li>not here, not holiday  sick </li></ul>? here  no ? seen  no ? holiday  no sick ? here  yes fine ? here  yes ? holiday  yes sick
  8. 8. Data-driven × Goal-driven here seen holiday absent building home fine sick data driven goal driven
  9. 9. Data-driven × Goal-driven <ul><li>goal driven ( backward chaining ) ~ blood diagnostic, theorem proving </li></ul><ul><ul><li>limited number of goal hypothesis </li></ul></ul><ul><ul><li>data shall be acquired, complicated data about the object </li></ul></ul><ul><ul><li>less operators to start with at the goal rather than at the data </li></ul></ul><ul><li>data driven ( forward chaining ) ~ configuration, interpretation, </li></ul><ul><ul><li>reasonable set of input data </li></ul></ul><ul><ul><li>data are given at the initial state </li></ul></ul><ul><ul><li>huge set of possible hypothesis </li></ul></ul><ul><li>taxonomy of rules, meta-rules, priorities, … </li></ul>
  10. 10. Knowledge Representation in ES <ul><li>Shallow Knowledge Models </li></ul><ul><ul><li>rules, frames, logic, networks </li></ul></ul><ul><ul><li>first generation expert systems </li></ul></ul><ul><li>Deep Knowledge Models </li></ul><ul><ul><li>describes complete systems causality </li></ul></ul><ul><ul><li>second generation expert systems </li></ul></ul><ul><li>Case Knowledge Models </li></ul><ul><ul><li>specifies precedent in past decision making </li></ul></ul>
  11. 11. Model Based Reasoning <ul><li>Sometimes it is either impossible or imprecise to describe the domain in terms of rules … </li></ul><ul><li>Here we use a predictive computational model of the domain object in order to represent more theoretical deep knowledge model </li></ul><ul><li>Model is based either on </li></ul><ul><ul><li>quantitative reasoning (differential equations, …) </li></ul></ul><ul><ul><li>qualitative reasoning (emphasizes some properties while ignoring other) </li></ul></ul><ul><li>Very much used for model diagnosis and intelligent tutoring </li></ul>
  12. 12. Qualitative Reasoning <ul><li>Qualitative Reasoning is based on symbolic computation aimed at modeling of behavior of physical systems </li></ul><ul><ul><li>commonsense inference mechanisms </li></ul></ul><ul><ul><li>partial, incomplete or uncertain information </li></ul></ul><ul><ul><li>simple, tractable computation </li></ul></ul><ul><ul><li>declarative knowledge </li></ul></ul><ul><li>QR Techniques: </li></ul><ul><ul><li>Constrain based – Qualitative Simulation QSIM </li></ul></ul><ul><ul><li>Component based – Envision </li></ul></ul><ul><ul><li>Process based – QPT (Qualitative Process Theory) </li></ul></ul>
  13. 13. QSIM – A Constraints Based Approach <ul><li>Qualitative system is described by parameters , domains and constraints (relations among parameters) </li></ul><ul><li>Qualitative simulation is thus only breath-first-search in the space of possible combination of values of the parameters </li></ul><ul><li>Qualitative behaviour is thus a path in the tree from the initial state to some leaf state </li></ul><ul><li>The structure of the system model is given in the form of qualitative equation consisting of constraints: </li></ul><ul><ul><li>arithmetic – add(A,B,C),mult(A,B,C) </li></ul></ul><ul><ul><li>derivative – der(height, velocity) </li></ul></ul><ul><ul><li>monotonicity – M+(wrinkle,age) M-(hunger,consumption) </li></ul></ul>
  14. 14. QSIM – A Constraints Based Approach <ul><li>Qualitative State of each parameter is a couple: {value,direction} where value can be either an interval or landmark value and direction may be inc (increasing), dec (increasing) or std (steady) </li></ul><ul><li>Qualitative Reasoning Procedure: </li></ul><ul><ul><ul><ul><li>(i) wm  initial state </li></ul></ul></ul></ul><ul><ul><ul><ul><li>(ii) succ  find-successors of first(wm) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>(iii) succ  filter(succ) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>(iv) wm  wm – first(wm) + succ </li></ul></ul></ul></ul><ul><li>Filtering : pairwise consistency, redundancy, cycles, termination condition, logical direction of change, qualitative magnitude change </li></ul>
  15. 15. QSIM – A Pendulum Example <ul><li>system description: der(v,a) and der(s,v) </li></ul><ul><li>domains: a = {min,  min,0  ,0,  0,max  ,max} </li></ul><ul><li>v = {min,  min,0  ,0,  0,max  ,max} </li></ul><ul><li>s = {0,  0,max  ,max} </li></ul>a a v s min,std 0,std max,std -,dec 0,std +,dec max,std a +,dec max,std +,inc 0,std v +,inc +,inc +,inc 0,std s min,std 0,std 0,std +,inc 0,std -,inc min,std a -,inc min,std -,dec 0,std v +,dec +,dec +,dec max,std s
  16. 16. Case Based Reasoning <ul><li>part of the machine learning lecture </li></ul><ul><li>Algorithms: </li></ul><ul><ul><li>problem attributes description </li></ul></ul><ul><ul><li>retrieval of previous case </li></ul></ul><ul><ul><li>solution modification </li></ul></ul><ul><ul><li>testing new solution </li></ul></ul><ul><ul><li>repairing failure or inclusion into the plan library </li></ul></ul><ul><li>Utilized widely in law domain (Judge) </li></ul>
  17. 17. Knowledge Evolution <ul><ul><li>Strong Update - result of application of the knowledge extraction process on the set E  S. </li></ul></ul><ul><ul><li>Weak Update - relevant bits of the inference knowledge-base re-computation </li></ul></ul>