Dimensions, Scales, and Measures of Environmental Design

1,781 views

Published on

Following the 2008 "Re-imaging Cities: Urban Design After the Age of Oil symposium, Penn IUR solicited manuscripts on environmental and energy challenges and their effect on the redesign of urban environments.

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,781
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
25
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Dimensions, Scales, and Measures of Environmental Design

  1. 1. Working  Paper     Dimensions,  Scales,  and  Measures  of  Environmental  Design   William  W.  Braham     “Systems  that  reinforce  their  productive  processes  develop  and  displace  those  that  do  not.”     -­‐-­‐H.  T.  Odumi     Sustainability  has  never  been  a  very  useful  measure  for  designers,  though  it  has  become  a  nearly  ubiquitous  design  goal.  The  concept  of  “sustainable  development”  originated  as  a  compromise  between  the  growth  and  no-­‐growth  positions  within  the  environmental  movement,  promising  the  admirable  goal  of  growth  within  limits,  or  growth  with  minimal  impact,  though  the  question  quickly  becomes  “how  sustainable  is  sustainable   Tenough”?  It  has  proven  to  be  a  useful  term  for  indicating  a  general  ethic  or  direction,  but  like  the  addition  of  “green”  or  “smart”  or  “clean,”  sustainable  has  largely  come  to  mean   AF“somewhat  better  than  we  are  currently  doing.”  The  successes  and  failures  of  the  term  may  largely  be  due  to  its  generality,  but  in  common  usage  there  are  two  deeper  problems  with  the  concept:  it  relies  on  a  basic  ethic  of  restraint  and  a  static  notion  of  nature.   R From  an  ecological  perspective,  any  form  of  design  involves  a  diversion  of  resources  from  some  other  activity  and  the  development  of  new  arrangements  and  configurations.   DEven  in  the  most  restrained  forms—renovation  or  recycling—human  design  and  construction  use  excess  capacity  in  the  pursuit  of  more  resources.  Put  more  directly,  design  is  the  expenditure  of  power  in  the  pursuit  of  more  (or  continued)  power,  even  when  it  is  done  with  care  and  forethought.  Power  comes  in  many  forms,  and  this  formulation  begs  the  more  philosophical  question  of  “power  to  do  what,”  but  the  common  view  of  sustainability  offers  a  deceptive  picture  of  impact-­‐free  growth  extending  into  the  distant  future.  It  is  perhaps  closest  to  the  discredited  notion  of  the  climax  forest,  a  perfected  ecological  steady-­‐state  of  complex  interdependence  and  industrious  productivity  attained  in  the  temperate    
  2. 2. Working  Paper    biomes  of  Europe,  Asia,  and  North  America.  While  those  great  forests  are  models  of  ecological  richness,  they  are  hardly  peaceful  or  unchanging,  either  in  their  extents,  their  mix  of  species,  or  their  productivity.  The  system  ecologist,  H.  T.  Odum,  was  deeply  critical  of  the  underlying  assumptions  of  sustainable  development  because  he  saw  that  just  as  natural  systems  were  fundamentally  dynamic  entities  competing  for  resources,  so  too  were  social  and  cultural  systems.ii  Species,  populations,  temperatures,  and  markets  all  rise  and  fall  in  the  competition  for  power.   Observing  that  things  ebb  and  flow  in  the  competition  for  resources  may  seem  commonplace,  but  the  task  for  designers  is  to  develop  concepts  that  provide  more  precise   Tguidance  within  the  ever-­‐changing  systems  into  which  their  design  are  projected.  Drawing   AFon  the  work  of  Odum  and  other  ecologists,  two  immediate  challenges  present  themselves  to  designers:  understanding  the  right  scales  or  dimensions  for  environmental  design  decisions  and  developing  the  right  measures  with  which  to  evaluate  them.   RScales and Dimensions D Architects  are  necessarily  concerned  with  buildings  and  building  sites,  but  environmental  flows  and  effects  operate  at  many  other  scales  and  along  other  dimensions,  from  the  biochemical  to  the  global.  Herbert  Simon  has  argued  that  all  complex  systems  organize  themselves  into  discrete,  interrelated,  and  hierarchical  sub-­‐systems.iii  While  he  uses  the  term  “hierarchic”  to  describe  their  interrelationships,  he  means  to  include  systems  with  different  kinds  of  structure  and  order,  from  the  rigidly  hierarchical  cell-­‐tissue-­‐organ  structure  of  biological  bodies  to  Deleuzian  “bodies  without  organs”  such  as  the  weather  systems  that  produces  transient  sub-­‐systems  like  high-­‐pressure  zones,  cold-­‐fronts,  and    
  3. 3. Working  Paper    hurricanes.iv  Simon  makes  the  point  about  hierarchic  systems  to  argue  that  different  problems  or  questions  belong  to  specific  sub-­‐systems.  Water  use  and  storm  run-­‐off  in  a  building,  for  example,  are  questions  about  the  capacity  of  the  local  watershed,  while  the  environmental  cost  and  value  of  building  products  are  now  thoroughly  global  matters,  involving  multiple,  interconnected  systems  of  manufacturing,  transportation,  installation,  and  disposal.  The  first  task  of  environmental  design,  then,  is  identifying  the  sub-­‐systems  with  which  a  project  will  interact.   The  marvellous  thing  about  complex  ecosystems  is  the  number  and  variety  of  sub-­‐systems  involved,  and  the  degree  to  which  they  operate  at  different  scales,  overlapping,   Tinterpenetrating,  and  cooperating.  Stationary  elements  like  plants  and  trees  (or  buildings)   AFare  penetrated  by  mobile  populations  of  microbes,  insects,  and  animals,  and  by  equally  mobile  flow  systems  of  water  and  air,  that  facilitate  subtle  exchanges  of  materials  and  then  can  suddenly  transport  vast  quantities  of  the  same  material.  The  challenge  for  architects   Rhas  been  the  degree  to  which  the  discipline  is  conceived  formally  and  spatially,  as  an  activity  defined  by  formally  visible  boundaries,  and  whose  modes  of  analysis  and   Drepresentation  privilege  fixed  and  durable  elements.  Through  the  twentieth  century  designers  have  developed  and  experimented  with  many  methods  for  addressing  the  dynamic  aspects  of  buildings  (and  cities),  from  flow  charts  of  construction  sequences  to  CFD  analyses  of  temperature  and  air  flow  to  parametric  techniques  for  the  description  of  form.  But  as  ecologists  have  also  learned,  the  method  of  analysis  and  representation  depends  on  the  question  being  asked  and  on  the  sub-­‐systems  involved  or  the  boundaries  among  the  systems  that  are  being  considered.    
  4. 4. Working  Paper     As  a  starting  point,  it  is  important  to  consider  the  different  scales  and  dimensions  of  the  systems  within  which  buildings  and  building  sites  operate.  The  most  intuitive  form  of  description  for  designers  would  be  spatial  scales,  extending  from  the  building  footprint  and  its  site  defined  by  ownership  to  its  neighborhood,  landscape,  watershed,  city,  region,  biome,  country,  and  continent,  each  of  which  involves  different  kinds  of  boundaries  and  elements.  As  Simon  suggests,  environmental  decisions  have  to  be  situated  within  the  relevant  ecological  sub-­‐systems  and  many  of  these  are  firmly  spatial.  Sim  Van  der  Ryn  has  also  argued  that  these  different  spatial  scales  are  maintained  by  critical  exchanges  of  energy  and  materials  between  scales,  so  human  design  must  consider  these  non-­‐spatial,   Tlinking  systems  as  well.v     AF The  situation  is  already  even  more  complex.  In  the  list  of  scales  above,  some  are  defined  by  the  sub-­‐systems  of  ecosystems,  while  others  are  social  and  political  entities,  and  the  two  don’t  often  correspond.  Or  more  precisely,  human  constructions  and  settlements   Rfrequently  begin  with  the  scales  and  opportunities  of  natural  systems  and  then  grow  to  exceed  them.  As  Odum  once  observed,  all  material  and  energy  flows  are  always  already   Ddoing  some  kind  of  work  in  the  ecosystem,  meaning  there  is  no  “free”  material  or  energy,  only  resources  diverted  from  other  uses.  Design  “with”  natural  systems  begins  as  the  diversion  of  energy  and  material  for  human  purposes,  can  quickly  turn  to  over-­‐use  as  different  thresholds  of  disruption  are  reached,  but  can  also  produce  new  hybrid  combinations  of  natural  and  human  systems.  The  most  spectacular  hybrid  so  far  has  been  that  between  human  civilization  and  the  energy  of  ancient  photosynthesis  in  stored  in  fossil  fuels.  That  hybridization  has  also  produced  epic  disruptions  in  natural  systems  as  it    
  5. 5. Working  Paper    converts  that  stored  energy,  so  environmental  design  has  sought  to  both  understand  and  ameliorate  those  disruptions  and  to  develop  new  hybrids  of  equal  power.   [INSERT  FIGURE  1]   An  equally  critical  set  of  scales,  which  emerged  from  studies  of  commercial  office  buildings,  are  the  temporal  dimensions  of  buildings  and  their  elementsvi  (see  Fig.  1).  The  initial  diagrams  of  office  buildings  prepared  by  Francis  Duffy  distinguished  four  “layers  of  longevity”  of  commercial  construction  by  the  rate  of  their  replacement,  from  the  longer-­‐lasting  building  shell  to  the  more  frequently  altered  furnishings.  That  description  acknowledged  real  differences  in  duration,  and  helped  formalize  distinctions  that  exist   Tamong  the  groups  that  design  different  elements,  the  depreciation  periods  written  in  tax   AFcodes,  and  the  kinds  of  buildings  and  design  practices  that  develop  in  response.  The  “core-­‐and-­‐shell”  building,  for  example,  and  the  tenant  “fit-­‐out”  are  different  temporal  dimensions  of  the  same  building.  Distinguishing  them  facilitates  the  changing  of  higher  velocity  layers   Rwithout  disturbing  the  slower,  more  expensive  ones.  Subsequent  studies  further  divided  those  four  layers  into  six,  and  then  seven,  layers,  each  distinguishing  different  kinds  of   Dchange  in  buildings.   One  of  the  conclusions  reached  by  many  environmentally  minded  designers  is  that  the  separation  of  such  temporal  layers  improves  the  resource  efficiency  of  buildings,  allowing  for  easier,  less  disruptive  adaptations  and  more  efficient  recycling.vii  In  effect  this  has  involved  the  translation  of  commercial  building  practices  to  other  types  of  construction,  with  core-­‐and-­‐shell  residential  construction  and  the  development  of  residential  fittings  and  appliances  that  move  with  the  resident.  But  there  is  some  limit  to  this  tactic  when  we  recognize  the  other  dimensions,  or  sub-­‐systems,  into  which  these    
  6. 6. Working  Paper    temporal  layers  can  be  divided.  Elements  of  the  same  layer,  the  furniture  and  equipment  of  an  office  for  example,  may  be  selected  or  purchased  by  different  groups,  have  different  rates  of  technological  obsolescence,  or  even  be  elements  of  different  cultural  fashions.  The  Aeron  desk  chair,  which  became  a  characteristic  element  of  the  dot.com  office  is  purchased  and  used  differently  than  the  filing  cabinet  it  sits  next  to  or  the  carpet  on  which  it  rolls.   [INSERT  FIGURE  2]   These  examples  add  the  even  more  complex  questions  of  human  use,  display,  and  meaning  to  natural  and  technological  systems,  further  linking  them  to  cultural,  social,  and  institutional  sub-­‐systems.  The  value  of  fresh  water  or  of  an  expensive  chair  is  negotiated   Twithin  a  rich  system  of  exchange  in  which  scarcity  values  of  all  kinds  are  magnified  and   AFenhanced.  What  is  the  built  environment  but  the  display  of  human  wealth  and  power,  not  merely  as  cultural  symbols,  but  in  the  most  precise  terms  of  design?  The  decision  about  the  appropriateness  of  an  Aeron  chair  for  a  particular  setting  is  a  matter  of  taste,  fashion,  and   Rbudget,  but  a  budget  that  reflects  the  total  situation  and  resources  of  the  individual  or  institution  for  which  it  is  intended.  The  value  of  the  chair  in  this  example  derives  from  a   Dcombination  of  the  underlying  scarcity  of  the  “natural”  energies  and  human  labor  required  for  its  production  and  the  particular  social  and  institutional  niche  for  which  is  intended.  Human  design  has  probably  exceeded  simple  survival  or  shelter  needs  from  the  very  start,  but  the  question  about  appropriate  scale  arises  with  the  recognition  of  ecological  connections.   [INSERT  FIGURE  3]   As  the  environmental  movement  has  argued  since  the  1970s,  the  ultimate  scale  for  design  is  the  biosphere  (see  Figure  3),  but  it  is  a  biosphere  of  many  sub-­‐systems  that  are    
  7. 7. Working  Paper    largely  and  messily  hybridized  with  human  systems.  The  object  of  architectural  design  is  an  entity  of  many  scales  and  dimensions  that  focuses  local  and  global  systems  to  produce  and  support  a  building  for  some  period  of  time.  Environmental  design  operates  in  both  directions,  tracking  all  those  scales  and  dimensions  in  their  many  connections  and  evaluating  the  discrete  projects  that  they  enable.  The  first  tool  of  environmental  design  may  be  the  ecological  boundary  diagram  drawn  around  a  project  to  track  the  various  exchanges  and  flows  in  natural,  technological,  and  human  systems.  That  boundary  provides  a  site  for  making  visible  the  spatial,  temporal,  and  institutional  systems  specific  to  the  project.  But  environmental  design  is  not  merely  a  question  of  the  scarcity  or  efficiency  of   Tthe  many  flows  across  the  project  boundary,  of  simply  using  fewer  resources.  Any  real   AFmeasure  for  environmental  design  has  to  take  account  of  the  accumulation  of  wealth  and  the  uses  of  power.   RMeasures The  opposition  between  scarcity  and  excess,  or  between  efficiency  and  luxury,  is   Dcommon  to  debates  about  sustainability,  which  are  frequently  framed  in  moral  terms  and  lead  to  the  condemnation  of  waste  and  the  lauding  of  frugality.  The  apparent  paradox  is  that  natural  systems  exhibit  no  such  restraint,  growing  to  the  limits  of  available  resources  and  increasing  in  complexity  as  they  grow.  I  don’t  mean  to  reduce  environmental  design  to  a  narrowly  competitive,  survivalist  ethic.  Natural  systems  typically  grow  through  a  variety  of  forms  of  cooperative  interactions  whose  interdependencies  only  increase  as  eco-­‐systems  develop,  so  the  challenge  is  to  understand  other  forms  of  growth.  The  difference  lies  in  the  scale  of  the  explanation.  George  Bataille  argued  that  while  individuals  and  their  economies    
  8. 8. Working  Paper    are  necessarily  governed  by  scarcity  (and  efficiency),  that  “living  matter  in  general”  is  governed  by  the  steady  and  luxurious  flow  of  energy  from  the  sun,  which  must  be  expended  either  in  growth  or  in  some  form  of  “luxury”.viii  With  the  term  “luxury”  Bataille  meant  expenditure  without  immediate  “return,”  but  that  is  itself  a  perspective  of  the  individual.  Luxury  is  partly  a  question  of  which  scale  or  system  is  considered  and  what  kinds  of  returns  are  accounted  for.  The  prosperity  and  fecundity  of  eco-­‐systems  are  what  matters,  but  that  fecundity  can  be  experienced  as  luxury  by  its  individual  parts.   The  fundamental  point  made  by  Odum,  which  he  had  developed  from  Lotka’s  work  linking  energy  use  and  evolution  in  the  early  twentieth  century,  was  that  natural  systems   Tdon’t  compete  to  minimize  their  use  of  energy,  but  to  maximize  their  power,  their  ability  to   AFaccomplish  useful  work.ix  In  seems  as  if  that  should  be  the  same  thing,  as  if  a  more  efficient  use  of  energy  would  yield  more  power,  but  sustained  maximum  power  only  occurs  at  a  medium  rate  of  efficiency  and  leads  to  a  quite  different  ethic  of  design.  In  natural  systems  it   Rdevelops  into  a  whole  cascade  of  cooperative  uses  and  feedback  interactions  that  maximize  the  total  power  flowing  through  the  system.   D During  the  energy  supply  crises  of  the  1970s,  Odum  used  to  scandalize  his  students  by  saying  it  was  folly  for  America  to  voluntarily  renounce  its  use  of  oil,  since  it  would  just  be  used  by  other  countries  to  make  themselves  stronger.  The  point  is  twofold.  The  obvious  point  is  that  resources  will  be  used,  so  the  critical  decisions  are  how  to  use  them  well.  The  more  subtle  point  is  that  the  systems  which  prevail  over  time  are  those  that  “reinforce  their  productive  processes,”  meaning  that  they  not  only  obtain  more  power,  but  enhance  the  systems  and  processes  that  support  them.  From  some  perspectives  the  expenditures  involved  in  reinforcing  productive  processes  may  look  charitable,  wasteful,  or  luxurious.    
  9. 9. Working  Paper    William  McDonough  often  cites  the  seemingly  excessive  number  of  blossoms  and  fruit  on  a  cherry  tree  as  an  expenditure  that  looks  wasteful  if  measured  according  to  the  efficiency  of  the  tree  itself,  but  whose  waste  serves  as  food,  compost,  shelter  and  supports  other  aspects  of  the  eco-­‐system  that  supports  it.  Those  luxurious  display  by  the  tree  reduces  its  efficiency,  but  increases  the  power  and  prosperity  of  the  whole  eco-­‐system.   It  is,  or  course,  difficult  to  measure  prosperity,  especially  when  we  remember  the  dynamic  ebb-­‐and-­‐flow  nature  of  any  complex  system.  As  marketing  specialists  know  well,  the  luxuries  of  one  generation  become  the  needs  of  the  next,  and  that  cycle  easily  and  quickly  reverses  itself  when  conditions  change.  Odum’s  measure  of  prosperity  combined   This  argument  about  useful  power  with  the  system  diagram  of  the  whole  biosphere,  enabling   AFhim  to  start  with  original  environmental  energies—solar,  tidal,  and  geologic—and  trace  the  sequence  of  energy  transformations  through  which  they  pass.  He  coined  a  new  term,  “emergy,”  to  describe  the  cumulative  memory  or  embodiment  of  energy  involved  in  the   Rcascade  of  transformations,  with  “solar  emergy”  as  the  common  unit,  so  all  comparisons  or  measurements  were  in  similar  units.  He  developed  that  emergy  approach  into  an  elegant   Daccounting  system,  though  it  involves  many  approximations,  and  together  with  the  total  system  diagram,  captures  much  of  what  we  seek  when  we  ask  about  sustainability.x  Systems  prosper  that  manage  to  maximize  their  flow  of  solar  empower.   [INSERT  FIGURE  4  HERE]   The  vital  aspect  of  Odum’s  accounting  is  the  emergy  diagram  itself,  which  uses  systems  language  to  describe  the  cascade  of  energy  transformation,  feedback,  and  recycling  required  in  a  complex  eco-­‐system.  It  is  the  richness  of  interaction  that  “reinforces  productive  processes,”  and  for  which  environmental  design  needs  some  measure  or  tool  for    
  10. 10. Working  Paper    evaluation.  Ulanowicz  has  used  information  theory  to  calculate  the  amount  of  order  in  a  system,  which  he  combined  with  the  total  flow  of  resources  to  develop  a  simple  numerical  measure  of  system  prosperity,  but  it  seems  to  be  the  emergy  diagramming  that  offers  the  most  potential  as  a  design  tool.xi  The  potential  of  these  diagrams  for  design  have  barely  been  tapped,  and  can  reveal  the  kinds  of  interconnection  and  recycling  opportunities  that  designers  turn  to  instinctively,  but  whose  evaluation  has  been  limited  to  their  role  in  single  processes.  The  levels  of  complexity  developed  in  natural  systems  can  be  difficult  to  understand,  or  design,  when  the  scale  of  analysis  is  too  modest.  Diagramming  the  spatial  and  temporal  dimensions  described  above  can  also  extend  the  potential  of  the  diagrams  in   Tdesign  projects,  identifying  new  sites  for  innovation.  Odum’s  law  of  maximum  empower   AFoffers  an  antidote  to  the  paradoxes  of  sustainability,  acknowledging  the  pursuit  of  power  necessary  to  all  forms  of  growth,  while  providing  a  model  of  the  cooperative  prosperity  that  sustainable  design  has  sought.   R                                                                                                                i Howard T.Odum, Environment, Power, and Society for the Twenty-First Century: The Hierarchy of Energy (NewYork: Columbia University Press, 2007). p. .ii Howard T.Odum and Elisabeth C. Odum, A Prosperous Way Down: Principles and Policies (Boulder: University DPress of Colorado, 2001), p. .iii Herbert Simon, The Sciences of the Artificial, 3rd ed. (The MIT Press, 1996).iv Manuel DeLanda, A Thousand Years of Non-Linear History (New York: Swerve Editions, 1997).v Sim Van der Ryn and Stuart Cowen. Ecological Design (Washington, DC: Island Press, 2005), p. 51.vi Francis Duffy, The Changing Workplace (London: Phaidon Press, 1992).vii Ed van Hinte et al. Smart Architecture (Rotterdam: 010 Publishers, 2003), p. .viii Georges Bataille, The Accursed Share: An Essay on General Economy (New York: Zone Books, 1991).ix Howard T. Odum, Systems Ecology: An Introduction (New York: Wiley, 1983).xx Howard T. Odum, Environmental Accounting: EMERGY and Environmental Decision Making (New York:Wiley, 1996).xixi Robert E. Ulanowicz, Ecology: The Ascendent Perspective (New York: Columbia University Press, 1997).  
  11. 11. Working  Paper     29.  Dimensions,  Scales,  and  Measures  of  Environmental  Design   William  W.  Braham     Figures     T AF R  Figure  1.  Temporal  layers  of  building  design     D    Figure  2.  Herman  Miller  Aeron  Chair    
  12. 12. Working  Paper     T  Figure  3.  Emergy  diagram  of  the  biosphere     AF R D  Figure  4.  Emergy  diagram  of  a  university  campus      

×