Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Full Report

  • Login to see the comments

  • Be the first to like this

Full Report

  1. 1. ANALYSIS AND DESIGN OF COMPRESSOR SHELTER A Project Report Submitted by: (Team I.D : 1098) Patel Paras Madhavbhai (110050106006) Mistry Suresh Aidanram (110050106014) In partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING in CIVIL ENGINEERING Guide Dr. Paulomi B Vyas Principal Babaria Institute of technology, Vadodara Department of Civil Engineering BITS edu campus, Vadodara. Gujarat Technological University, Ahemdabad. December, 2014
  2. 2. CANDIDATE’S DECLARATION I declare that final semester report entitled “Analysis And Design Of Compressor Shelter” is our own work conducted under the supervision of the guide DR.PAULOMI VYAS (Internal, Guide). I further declare that to the best of my knowledge the report for B.E. final year does not contain part of the work which has been submitted for the award of B.E. Degree either in this or any other university without proper citation. PATEL PARAS MADHAVBHAI 110050106006 TEAM ID 1098
  3. 3. I CERTIFICATE This is to certify that the project entitled “Analysis And Design Of Compressor Shelter” is a bonafied report of the work carried out by Patel Paras Madhavbhai for Industry Defined Project in Semester VII under the guidance and supervision of external guide Mr.Neerav A Mehta and internal guide Dr.Paulomi Vyas, Principal for the partial fulfillment of award of the Degree of Bachelor of Civil engineering at Babaria Institute of Technology, Varnama, Vadodara, Gujarat. To the best of my knowledge and belief, this work embodies the work of candidate themselves, have duly completed, fulfills the requirement of the ordinance relating to the Bachelor Degree awarded by Gujarat Technological University and is up to the standard in respect of content, presentation and language for being referred to the Examiner. Main Guide Head of Department NEERAV A MEHTA Prof. NIPA A DESAI Asst General Manager L&T Knowledge city,Vadodara HOD Civil Department BIT-Varnama Internal- Guide DR. PAULOMI VYAS PRINCIPAL BIT-Varnama
  4. 4. II ACKNOWLEDGEMENT The success and final outcome of this project required a lot of guidance and assistance from many people and I am extremely fortunate to have got this all along the completion of my project work. Whatever I have done is only due to such guidance and assistance and I would not forget to thank them. I respect and thank Mr. Bhatt Anand, for giving me an opportunity to do the project and providing me all support and guidance which made me complete the project on time . I am extremely grateful to him for providing such a nice support and guidance though he had busy schedule managing the company affairs. I owe my profound gratitude to my project guide Mr. Neerav A Mehta, who took keen interest on my project work and guided me all along, till the completion of my project work by providing all the necessary information for developing a good system. I would not forget to remember my co-guide Mr. Sagar Sonawane, for their unlisted encouragement and more over for their timely support and guidance till the completion of our project work. I heartily thank my internal project guide, Dr Paulomi Vyas, Principal , Civil department, for his guidance and suggestions during this project work. Patel Paras Madhavbhai
  5. 5. III ABSTRACT Petroleum industry is often divided into the three major sectors namely upstream, midstream and downstream sector. Upstream sector includes searching for potential sources of oil and gas fields. Midstream sector includes processes, stores and transports commodities such as curd oil, natural gas for further extraction of different products whereas downstream sectors would include process plants for extraction of different petroleum products. Process plants in mid and downstream sectors mainly consist of pipe racks, equipment structures, plant buildings and compressor shelter, etc. The present study covers analysis and design of compressor shelter which consists of operating floor for compressor operation and maintenance, static equipment’s, piping for equipment and overhead traveling gantry crane. Various parameters affect the structural size and quantities of the compressor shelter which include wind & seismic loads, crane loads, maintenance & live loads and removable roof requirements etc. Other parameters also to be taken into consideration are structural quantity and size are support conditions & use of appropriate structural/built-up sections which depends on design case selected. Therefore, these parameters are considered for the parametric case study. • Introduction and functional requirements of compressor shelter. WORKFLOW CHART • Detail study of each component of compressor shelter. • Design load calculation as per IS codes. • Understanding various structural geometries and support conditions. • Manual analysis of each component for compressor shelter. • Staad-Pro analysis of each component of compressor shelter. • Verifying software analysis results with manual checks. • Design of foundation and foundation joints. • Connection detailing and design. • Parametric study of structural geometry with various support conditions. • Parametric study of various structural geometries. • Comparison and conclusion based on parametric study results.
  6. 6. IV ACKNOWLEDGEMENT Table of CONTENTS II ABSTRACT III TABLE OF CONTENT IV LIST OF FIGURE VI LIST OF TABLE VIII NOMENCLATURE AND ABBREVIATION IX SR NO CHAPTER NO. PARTICULAR PAGE NO 1 1 INTRODUCTION 1 2 1.1 General 2 3 1.2 Major items of compressor shelter 2 4 1.3 Information required for the design of compressor shelter 2 5 1.4 Objective of study 04 6 2 SCOPE OF WORK 05 7 3 CRITERIA OF DESIGN 07 8 3.1 General 8 9 3.2 Design criteria and specifications 8 10 3.3 Material of construction 8 11 3.4 Soil data 8 12 3.5 Load on compressor shelter 8 13 3.6 Connection 12 14 3.7 Load combination 12
  7. 7. V 15 3.8 Design parameter 18 16 4 ANALYSIS AND DESIGN OFCOMPRESSOR SHELTER 21 17 4.1 General 22 18 4.2 Structural modelling of compressor shelter 22 19 4.3 Dead load 23 20 4.4 Live load 24 21 4.5 Wind load 25 22 4.6 Seismic load 30 23 4.7 Design of purlin 32 24 4.8 Design of gantry 34 25 4.9 Design of foundation 44 26 4.10 Design of base plate and anchor bolt 52 27 4.11 Connections 55 28 5 STAAD.PRO REPORT 57 29 5.1 Material 58 30 5.2 Basic load cases 58 31 5.3 Node displacement summary 59 32 5.4 Beam displacement detail summary 59 33 5.5 Beam end displacement summary 60 34 5.6 Beam end force summary 60 35 5.7 Beam force detail summary 61 36 5.8 Reaction summary 61 37 6 REFERENCES 63
  8. 8. VI FIGURE NO. List of FIGURES TITLE PAGE NO. 3.1 Direction Of Dead Load 9 3.2 Imposed Load 9 3.3 Effect Of Wind Load 10 4.1 3D Model Of Shelter 22 4.2 Transverse Direction 23 4.3 Longitudinal Direction 23 4.4 Bending Moment Due To Dead Load 24 4.5 Bending Moment Due To Live Load 25 4.6 Bending Moment Due To Wind load In +X Direction 28 4.7 Bending Moment Due To Wind load In -X Direction 28 4.8 Bending Moment Due To Wind load In +Z Direction 29 4.9 Bending Moment Due To Wind load In -Z Direction 29 4.10 Bending Moment Due To Siesmic Load In +X Direction 31 4.11 Bending Moment Due To Siesmic Load In +Z Direction 31 4.12 Bending Moment Due To Siesmic Load In +Y Direction 32 4.13 ISMC CHANNEL 200 33 4.14 Gantry Data 35 4.15 UB 610 With MC400 at its Top 38 4.16 Geometry of Footing 45
  9. 9. VII 4.17 One Way Shear Check 48 4.18 Two Way Shear Check 49 4.19 Foundation Rebar Arrangement 51 4.20 Corner of Base Plate 53 4.21 Middle of Base Plate 53 4.22 Edge of Base Plate 53 4.23 Gantry to Column Connection 55 4.24 Gantry Beam Stay 56 5.1 Reactions 62
  10. 10. VIII TABLE NO. List of TABLES TITLE PAGE NO. 3.1 Zone factor Z 11 3.2 Support Condition 12 3.3 Loads & Load Combination 12 3.4 Design Parametrs 18 4.1 Support Condition 22 4.2 Wind Force Direction 26 4.3 Governing Load For Footing 44 4.4 Loads At Base Of Foundation 44 4.5 Bearing Capacity Check 46 4.6 Overturning Moment Check 46 4.7 Sliding Check 47 4.8 Roark’s Chart 54 4.9 Property Of Section 55 5.1 Material 58 5.2 Basic Load Cases 58 5.3 Node Displacement 59 5.4 Beam Displacement 59 5.5 Beam End Displacement 60 5.6 Beam Forces 60 5.7 Beam End Forces Details 61 5.8 Reactions 61
  11. 11. IX ABBREVIATION NOTATION AND NOMENCLATURE L = Length of member (m) I = Moment if inertia (cm4 Z = Section modulus (cm ) 3 T ) f T = Thickness of flange (mm) w R = Radius of gyration(cm) = Thickness of Web (mm) Fa = Permissible axial stress (N/mm2 f ) a = Actual axial stress (N/mm2 F ) B = Permissible bending stress (N/mm2 f ) B = Actual bending stress (N/mm2 B = Width of section(mm) ) D = Depth of section(mm) Cc W = Uniformly distributed load (kN/mm = Effective slenderness ratio 2 P = Axial load on member (kN) ) Fx = Horizontal force in X-direction (kN) Fz = Horizontal force in Z-direction (kN) S = Spacing between two member(mm) Cf M = Bending moment (kNm) = Force coefficient V = Shear force (kN) KZT C = Topographic factor pe C = Wind external force coefficient pi G = Gust factor = Wind internal force coefficient QZ = Wind pressure intensity (kN/mm2 Z = Zone factor ) hh I = Importance factor = Height of structure T = Time period Cv = Seismic coefficient
  12. 12. Team ID: 1098 INTRODUCTION CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 1 CHAPTER 1 INTRODUCTION
  13. 13. Team ID: 1098 INTRODUCTION CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 2 Compressors constitute an important part of the mechanical equipment in oil and gas refineries and petrochemical plants. Compressors are used for different applications in 1.1 GENERAL the main and auxiliary process cycles. Compressor shelter is the enclosure provided for the compressor and its associated equipment to protect them from various environment agencies such as wind, snow, heat, rain, etc. It may be with or without wall cladding. It include operating platform, hoisting devices such as hoist or crane, which are generally provided for the operation and maintenance purpose. Sometime compressor shelter is provided with two compressors. One is operating and other is provided for standby. When compressor is damaged or in case of power cut, to avoid shutdown of the plant, another compressor is required. If the main operating compressor is electric type then the other one can be of steam or diesel operating compressor. 1.1.2 DEFINITION ". Compressor shelter is the enclosure provided for the compressor and its associated equipment to protect them from various environment agencies such as wind, snow, heat, rain, etc. It may be with or without wall cladding. It include operating platform, hoisting devices such as hoist or crane, which are generally provided for the operation and maintenance purpose." 1. Vibrating Equipment such as, compressor, blowers, pump. 1.2 MAJOR ITEMS FOR WHICH THE SHELTER IS ENVISAGED. Foundation of the vibrating equipment and foundation of the shelter are isolated from each other in order to avoid vibration in shelter. 2. Static Equipment i.e. equipment other than pump or compressor such as a. Lube oil rundown tank. b. Silencer. c. Instrument Panel. d. Electrical Panel. e. Seal oil Console. 3. Piping for the equipments In order to avoid transfer of vibration in shelter, pulsating pipe from the compressor shall not be supported on the shelter. Separate supports shall be provided for them. 4. Hoist or overhead travelling crane. 5. Operating platform around the equipment. 6. Stair and ladder for providing access to the operating platform. 1.3 INFORMATION REQUIRED FOR DESIGN OF COMPRESSOR SHELTER
  14. 14. Team ID: 1098 INTRODUCTION CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 3 1.3.1 Job Specification Job specification contains design criteria affecting design of compressor shelter: 1. Space requirement 2. Walkway, platform, ladder, access to equipment in compressor shelter. 3. Minimum headroom clearance under overhead piping or supporting steel within area. 4. Access roads. 5. Standards to be used for the minimum spacing of lines in compressor shelter. 6. Handling and headroom requirement for equipment positioned under compressor shelter. 1.3.2 Information Required For Basic Design The following are the minimum information required for the basic design of the compressor shelter. 1. Configuration and dimension information a. Dimension (i.e. width, length, eaves height, extent of roofing and wall cladding, head clearance) b. Location of longitudinal span where vertical bracing cannot be provided. c. location of hoist beam, travelling crane distance, lifting height. d. Location of overhead travelling crane, travelling range and lifting height. e. Location of dropping area. f. Location of stair, walkway, and ladder. g. Required area of operating stage around the equipment for the maintenance purpose. h. Roof drainage method. 2. Piping information a. Piping route, piping load, and amount of thrust generated due to pulsation of fluid in pipes. b. Diameter and number of pipes for the wind load calculation. 3. Information related to Equipment. Location and loading data of the various components such as a. Lube oil rundown tank. b. Silencer. c. instrument panel. d. Electrical panel. e. Sea oil console
  15. 15. Team ID: 1098 INTRODUCTION CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 4 4. Information related to lifting devices - hoist beam capacity, dead weight, crane capacity, maximum wheel load, maintenance stage of hoisting devices, end clearance etc. 5. Other information such as width, height and route of electrical or instrument cable tray. Or duct, method of equipment installation etc. 1.3.3 Information Required For Detail Design All information mentioned in the basic information shall be fixed in loading data and shall be the base of the detail design. To Analyse and design a economical and stable roofed structure for the usage in industrial purpose like shelter for compressor and their equipment etc., using STAAD PRO and manual calculations. 1.4 OBEJECTIVE OF STUDY
  16. 16. GTU Team ID 1098 SCOPE OF WORK CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 5 CHAPTER 2 SCOPE OF WORK
  17. 17. GTU Team ID 1098 SCOPE OF WORK CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 6 The main scope of this project is to apply class room knowledge in the real world by designing a roofed compressor steel shelter structure. These steel building require large and clear areas unobstructed by the columns. The large floor area provides sufficient flexibility and facility for later change in the production layout without major building alterations. The industrial buildings are constructed with adequate headroom for the use of an overhead traveling crane. General Steel-framed buildings are commonly in use for industrial purposes. They are classified into three broad categories: • Warehouse and factory buildings. • Large span storage buildings. • Heavy industrial process plant structures. i.e: compressor steel shelter come in this category In the design of industrial buildings, load conditions and geometrical factors will dictate the degree of complication and hence the economy. The designer should possess good knowledge about the industrial process or purpose for which the building is intended. In this way, an optimum balance between safety, function and economy can be achieved. For the present case study, a compressor steel shelter having span of 32m and width of 18m situated at manglore karnataka is to be designed and to be modeled in STAAD PRO. Different load such as dead load, wind load, live load, earthquake load are to be calculated and to be applied to the structure and stable and economical shelter is to be design. For optimum steel shelter various parameters affect the structural size and quantities of the compressor shelter which include wind & seismic loads, crane loads, maintenance & live loads and removable roof requirements etc. Other parameters to be taken into consideration are structural quantity and size are support conditions & use of appropriate structural/built-up sections which depends on design case selected. thus after designing the shelter, the parametric study of structural geometry with different support conditions and parametric study of different structural geometries is to be done and studying the different parametric study ,the conclusion and results are to be made in this present case study of analysis and design of compressor steel shelter.
  18. 18. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 7 CHAPTER 3 DESIGN CRITERIA
  19. 19. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 8 This outline the criteria for the design of the structure, loads, load combinations, and material used for the problem. 3.1 GENERAL The design of compressor shelter is carried out in accordance with the following codes and standards. 3.2 DESIGN CRITERIA AND SPECIFICATIONS 1. DESIGN PHILOSOPHY 2. INDIAN STANDARD CODE IS-800(2007) 3. INDIAN STANDARD CODE IS-875(1987) (PART 1 TO PART 3) 4. INDIAN STANDARD CODE 456(2007) 5. INDIAN STANDARD CODE IS-1893(2002) (PART 1 & PART 4) Entire superstructure shall be of structural steel 3.3 MATERIAL OF CONSTRUCTION 1. Structural steel: fu = 410 N/mm2 fy = 250 N/mm 2. Structural concrete: M30 grade 2 Soil bearing capacity to be considered for the design is as follows. 3.4 SOIL DATA SBC = 250N/mm2 3.5.1 Dead Load (DL) 3.5 LOAD ON COMPRESSOR SHELTER
  20. 20. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 9 Figure 3.1 Direction of dead load Dead loads are permanent loads that do not change in the structure’s life. They are, • Self-weight of the structure • Material incorporated into the structure: walls, floors, roofs, ceilings and permanent constructions • Permanent equipments: fixtures, fittings, electrical wiring, plumbing tubes, ducted air system. • Partitions, fixed and movable • Stored materials When there is significant design change, dead loads should be reassessed and followed by a fresh structural analysis. Calculation of Dead loads is done as follows: Dead load of component= unit weight of the component x volume of the component 3.5.2 Live Load (LL): Figure 3.2 Imposed or live load Live loads are the result of the occupancy of a structure. In other words, it varies with how the building is to be used. The specified live loads are generally expressed either as uniformly distributed area loads or point loads applied over small areas.
  21. 21. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 10 3.5.3 Wind Load (WL): The wind pressure on a structure depends on the location of the structure, height of structure above the ground level and also on the shape of the structure. The code gives the basic wind pressure for the structures in various parts of the country. Both the wind pressures viz. including wind of short duration and excluding wind of short duration, have been given. All structures should be designed for the short duration wind. Figure 3.3 effect of wind on building Wind load are calculated as follows as per is code 875 part-3 The wind loads are calculated using IS: 875(part3) as. Wind pressure = 0.6 x Vz 2 , where Vz V =design wind speed z = k1 k2 k3Vb k1 = probability factor k2 k = Terrain and height factor 3 Wind force = (Cpe-Cpi) x A x Pd, where, Cpe = external pressure = Topography factor Cpi = internal pressure 3.5.4 Seismic Load (V): Earthquake loading is different from wind loading in several respects and so earthquake design is also quite different from design for wind and other gravity loads. Severe earthquakes impose very high loads and so the usual practice is to ensure elastic behavior under moderate earthquake and provide ductility to cater for severe earthquakes. Steel is inherently ductile and so only the calculation of loads due to moderate earthquake is considered. This has be done as per the IS 1893 code.
  22. 22. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 11 According to code, a horizontal seismic coefficient times the weight of the structure should be applied as equivalent static earthquake load and the structure should be checked for safety under this load as specified in IS 800. 𝐴ℎ = ZISa 2Rg Where, Ah =horizontal seismic coefficient Z = Zone factor corresponding to the seismic zone obtained from a map I = Importance factor, R = Response reduction factor, 𝑆𝑎 𝑔 = Spectral Acceleration Coefficient Table 3.1 Zone factor Z Seismic Zone II III IV V Sesimic Intensity Low Moderate Severe Very Severe Zone factor 0.10 0.16 0.24 0.36 3.5.5 Crane Load (C): Weight of crane bridge = 18400kg Weight of trolley = 6000kg Lift capacity of the crane = 15tonne Distance between rails = 14.9m Hook approach = 1.3m No. of wheel = 4 wheel Wheel load = 16.5tonne per wheel Vertical impact load = 0.25 x (crane weight + trolley + lifted weight)
  23. 23. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 12 Side thrust /Horizontal impact load normal to runway rails = 020 x (trolley weight + lifted weight) Longitudinal tractive force = 0.10 x (Maximum wheel load) The steel supports shall be taken at top of the concrete pedestal and the boundary condition are as follow: 3.6 CONNECTION Table 3.2 Support condition MEMBER TYPE Transverse direction Longitudinal direction COLUMN Pinned connection Pinned connection Table 3.3 Load combination 3.7 LOAD COMBINATION L/C Name 51 1.5(DL+LL+CL) 52 1.2(DL+LL+CL)+0.6(WL+X) 53 1.2(DL+LL+CL)+0.6(WL+Z) 54 1.2(DL+LL+CL)+0.6(WL-X) 55 1.2(DL+LL+CL)+0.6(WL-Z) 56 1.2(DL+LL+CL)+0.6(EQ SRSS +X)+0.18(EQ SRSS +Z)+0.18(EQ SRSS +Y) 57 1.2(DL+LL+CL)+0.6(EQ SRSS +X)+0.18(EQ SRSS +Z)-0.18(EQ SRSS +Y) 58 1.2(DL+LL+CL)+0.6(EQ SRSS +X)-0.18(EQ SRSS +Z)+0.18(EQ SRSS +Y) 59 1.2(DL+LL+CL)+0.6(EQ SRSS +X)-0.18(EQ SRSS +Z)-0.18(EQ SRSS +Y) 60 1.2(DL+LL+CL)-0.6(EQ SRSS +X)+0.18(EQ SRSS +Z)+0.18(EQ SRSS +Y) 61 1.2(DL+LL+CL)-0.6(EQ SRSS +X)-0.18(EQ SRSS +Z)+0.18(EQ SRSS +Y) 62 1.2(DL+LL+CL)-0.6(EQ SRSS +X)+0.18(EQ SRSS +Z)-0.18(EQ SRSS +Y)
  24. 24. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 13 63 1.2(DL+LL+CL)-0.6(EQ SRSS +X)-0.18(EQ SRSS +Z)-0.18(EQ SRSS +Y) 64 1.2(DL+LL+CL)+0.18(EQ SRSS +X)+0.6(EQ SRSS +Z)+0.18(EQ SRSS +Y) 65 1.2(DL+LL+CL)-0.18(EQ SRSS +X)+0.6(EQ SRSS +Z)+0.18(EQ SRSS +Y) 66 1.2(DL+LL+CL)+0.18(EQ SRSS +X)+0.6(EQ SRSS +Z)-0.18(EQ SRSS +Y) 67 1.2(DL+LL+CL)-0.18(EQ SRSS +X)+0.6(EQ SRSS +Z)-0.18(EQ SRSS +Y) 68 1.2(DL+LL+CL)+0.18(EQ SRSS +X)-0.6(EQ SRSS +Z)+0.18(EQ SRSS +Y) 69 1.2(DL+LL+CL)-0.18(EQ SRSS +X)-0.6(EQ SRSS +Z)+0.18(EQ SRSS +Y) 70 1.2(DL+LL+CL)+0.18(EQ SRSS +X)-0.6(EQ SRSS +Z)-0.18(EQ SRSS +Y) 71 1.2(DL+LL+CL)-0.18(EQ SRSS +X)-0.6(EQ SRSS +Z)-0.18(EQ SRSS +Y) 72 1.2(DL+LL+CL)+0.18(EQ SRSS +X)+0.18(EQ SRSS +Z)+0.6(EQ SRSS +Y) 73 1.2(DL+LL+CL)-0.18(EQ SRSS +X)+0.18(EQ SRSS +Z)+0.6(EQ SRSS +Y) 74 1.2(DL+LL+CL)+0.18(EQ SRSS +X)-0.18(EQ SRSS +Z)+0.6(EQ SRSS +Y) 75 1.2(DL+LL+CL)-0.18(EQ SRSS +X)-0.18(EQ SRSS +Z)+0.6(EQ SRSS +Y) 76 1.2(DL+LL+CL)+0.18(EQ SRSS +X)+0.18(EQ SRSS +Z)-0.6(EQ SRSS +Y) 77 1.2(DL+LL+CL)-0.18(EQ SRSS +X)+0.18(EQ SRSS +Z)-0.6(EQ SRSS +Y) 78 1.2(DL+LL+CL)+0.18(EQ SRSS +X)-0.18(EQ SRSS +Z)-0.6(EQ SRSS +Y) 79 1.2(DL+LL+CL)-0.18(EQ SRSS +X)-0.18(EQ SRSS +Z)-0.6(EQ SRSS +Y) 80 1.2(DL+LL+(WL+X)+CL) 81 1.2(DL+LL+(WL+Z)+CL) 82 1.2(DL+LL+(WL-X)+CL) 83 1.2(DL+LL+(WL-Z)+CL) 84 1.2(DL+LL+CL)+1.2(EQ SRSS +X)+0.36(EQ SRSS +Z)+0.36(EQ SRSS +Y) 85 1.2(DL+LL+CL)+1.2(EQ SRSS +X)-0.36(EQ SRSS +Z)+0.36(EQ SRSS +Y) 86 1.2(DL+LL+CL)+1.2(EQ SRSS +X)+0.36(EQ SRSS +Z)-0.36(EQ SRSS +Y) 87 1.2(DL+LL+CL)+1.2(EQ SRSS +X)-0.36(EQ SRSS +Z)-0.36(EQ SRSS +Y)
  25. 25. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 14 88 1.2(DL+LL+CL)-1.2(EQ SRSS +X)+0.36(EQ SRSS +Z)+0.36(EQ SRSS +Y) 89 1.2(DL+LL+CL)-1.2(EQ SRSS +X)-0.36(EQ SRSS +Z)+0.36(EQ SRSS +Y) 90 1.2(DL+LL+CL)-1.2(EQ SRSS +X)+0.36(EQ SRSS +Z)-0.36(EQ SRSS +Y) 91 1.2(DL+LL+CL)-1.2(EQ SRSS +X)-0.36(EQ SRSS +Z)-0.36(EQ SRSS +Y) 92 1.2(DL+LL+CL)+0.36(EQ SRSS +X)+1.2(EQ SRSS +Z)+0.36(EQ SRSS +Y) 93 1.2(DL+LL+CL)-0.36(EQ SRSS +X)+1.2(EQ SRSS +Z)+0.36(EQ SRSS +Y) 94 1.2(DL+LL+CL)+0.36(EQ SRSS +X)+1.2(EQ SRSS +Z)-0.36(EQ SRSS +Y) 95 1.2(DL+LL+CL)-0.36(EQ SRSS +X)+1.2(EQ SRSS +Z)-0.36(EQ SRSS +Y) 96 1.2(DL+LL+CL)+0.36(EQ SRSS +X)-1.2(EQ SRSS +Z)+0.36(EQ SRSS +Y) 97 1.2(DL+LL+CL)-0.36(EQ SRSS +X)-1.2(EQ SRSS +Z)+0.36(EQ SRSS +Y) 98 1.2(DL+LL+CL)+0.36(EQ SRSS +X)-1.2(EQ SRSS +Z)-0.36(EQ SRSS +Y) 99 1.2(DL+LL+CL)-0.36(EQ SRSS +X)-1.2(EQ SRSS +Z)-0.36(EQ SRSS +Y) 100 1.2(DL+LL+CL)+0.36(EQ SRSS +X)+0.36(EQ SRSS +Z)+1.2(EQ SRSS +Y) 101 1.2(DL+LL+CL)-0.36(EQ SRSS +X)+0.36(EQ SRSS +Z)+1.2(EQ SRSS +Y) 102 1.2(DL+LL+CL)+0.36(EQ SRSS +X)-0.36(EQ SRSS +Z)+1.2(EQ SRSS +Y) 103 1.2(DL+LL+CL)-0.36(EQ SRSS +X)-0.36(EQ SRSS +Z)+1.2(EQ SRSS +Y) 104 1.2(DL+LL+CL)+0.36(EQ SRSS +X)+0.36(EQ SRSS +Z)-1.2(EQ SRSS +Y) 105 1.2(DL+LL+CL)-0.36(EQ SRSS +X)+0.36(EQ SRSS +Z)-1.2(EQ SRSS +Y) 106 1.2(DL+LL+CL)+0.36(EQ SRSS +X)-0.36(EQ SRSS +Z)-1.2(EQ SRSS +Y) 107 1.2(DL+LL+CL)-0.36(EQ SRSS +X)-0.36(EQ SRSS +Z)-1.2(EQ SRSS +Y) 108 1.5(DL+(WL+X)) 109 1.5(DL+(WL+Z)) 110 1.5(DL+(WL-X)) 111 1.5(DL+(WL-Z)) 112 1.5(DL)+1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 113 1.5(DL)+1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 114 1.5(DL)+1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 115 1.5(DL)+1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 116 1.5(DL)-1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y)
  26. 26. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 15 117 1.5(DL)-1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 118 1.5(DL)-1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 119 1.5(DL)-1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 120 1.5(DL)+0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 121 1.5(DL)-0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 122 1.5(DL)+0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 123 1.5(DL)-0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 124 1.5(DL)+0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 125 1.5(DL)-0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 126 1.5(DL)+0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 127 1.5(DL)-0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 128 1.5(DL)+0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 129 1.5(DL)-0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 130 1.5(DL)+0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 131 1.5(DL)-0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 132 1.5(DL)+0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 133 1.5(DL)-0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 134 1.5(DL)+0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 135 1.5(DL)-0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 136 0.9(DL) +1.5(WL+X) 137 0.9(DL) +1.5(WL+Z) 138 0.9(DL) +1.5(WL-X) 139 0.9(DL) +1.5(WL-Z) 140 0.9(DL)+1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 141 0.9(DL)+1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 142 0.9(DL)+1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 143 0.9(DL)+1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 144 0.9(DL)-1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 145 0.9(DL)-1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)+0.45(EQ SRSS +Y) 146 0.9(DL)-1.5(EQ SRSS +X)+0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 147 0.9(DL)-1.5(EQ SRSS +X)-0.45(EQ SRSS +Z)-0.45(EQ SRSS +Y) 148 0.9(DL)+0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 149 0.9(DL)-0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 150 0.9(DL)+0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 151 0.9(DL)-0.45(EQ SRSS +X)+1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 152 0.9(DL)+0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 153 0.9(DL)-0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)+0.45(EQ SRSS +Y) 154 0.9(DL)+0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 155 0.9(DL)-0.45(EQ SRSS +X)-1.5(EQ SRSS +Z)-0.45(EQ SRSS +Y) 156 0.9(DL)+0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 157 0.9(DL)-0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 158 0.9(DL)+0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 159 0.9(DL)-0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)+1.5(EQ SRSS +Y) 160 0.9(DL)+0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 161 0.9(DL)-0.45(EQ SRSS +X)+0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 162 0.9(DL)+0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 163 0.9(DL)-0.45(EQ SRSS +X)-0.45(EQ SRSS +Z)-1.5(EQ SRSS +Y) 164 1(DL+LL+CL) 165 1(DL)+0.8(LL+CL+(WL+X))
  27. 27. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 16 166 1(DL)+0.8(LL+CL+(WL+Z)) 167 1(DL)+0.8(LL+CL+(WL-X)) 168 1(DL)+0.8(LL+CL+(WL-Z)) 169 1(DL)+0.8(LL+CL)+0.8(EQ SRSS +X)+0.24(EQ SRSS +Z)+0.24EQ SRSS +Y 170 1(DL)+0.8(LL+CL)+0.8(EQ SRSS +X)-0.24(EQ SRSS +Z)+0.24EQ SRSS +Y 171 1(DL)+0.8(LL+CL)+0.8(EQ SRSS +X)+0.24(EQ SRSS +Z)-0.24EQ SRSS +Y 172 1(DL)+0.8(LL+CL)+0.8(EQ SRSS +X)-0.24(EQ SRSS +Z)-0.24EQ SRSS +Y 173 1(DL)+0.8(LL+CL)-0.8(EQ SRSS +X)+0.24(EQ SRSS +Z)+0.24EQ SRSS +Y 174 1(DL)+0.8(LL+CL)-0.8(EQ SRSS +X)-0.24(EQ SRSS +Z)+0.24EQ SRSS +Y 175 1(DL)+0.8(LL+CL)-0.8(EQ SRSS +X)+0.24(EQ SRSS +Z)-0.24EQ SRSS +Y 176 1(DL)+0.8(LL+CL)-0.8(EQ SRSS +X)-0.24(EQ SRSS +Z)-0.24EQ SRSS +Y 177 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)+0.8(EQ SRSS +Z)+0.24EQ SRSS +Y 178 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)+0.8(EQ SRSS +Z)+0.24EQ SRSS +Y 179 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)+0.8(EQ SRSS +Z)-0.24EQ SRSS +Y 180 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)+0.8(EQ SRSS +Z)-0.24EQ SRSS +Y 181 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)-0.8(EQ SRSS +Z)+0.24EQ SRSS +Y 182 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)-0.8(EQ SRSS +Z)+0.24EQ SRSS +Y 183 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)-0.24(EQ SRSS +Z)-0.3EQ SRSS +Y 184 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)-0.8(EQ SRSS +Z)-0.24EQ SRSS +Y 185 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)+0.24(EQ SRSS +Z)+0.8EQ SRSS +Y 186 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)+0.24(EQ SRSS +Z)+0.8EQ SRSS +Y 187 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)-0.24(EQ SRSS +Z)+0.8EQ SRSS +Y 188 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)-0.24(EQ SRSS +Z)+0.8EQ SRSS +Y 189 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)+0.24(EQ SRSS +Z)-0.8EQ SRSS +Y 190 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)+0.24(EQ SRSS +Z)-0.8EQ SRSS +Y 191 1(DL)+0.8(LL+CL)+0.24(EQ SRSS +X)-0.24(EQ SRSS +Z)-0.8EQ SRSS +Y
  28. 28. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 17 192 1(DL)+0.8(LL+CL)-0.24(EQ SRSS +X)-0.24(EQ SRSS +Z)-0.8EQ SRSS +Y 193 1(DL+(WL+X)) 194 1(DL+(WL+Z)) 195 1(DL+(WL-X)) 196 1(DL+(WL-Z)) 197 1(DL)+1(EQ SRSS +X)+0.3(EQ SRSS +Z)+0.3(EQ SRSS +Y) 198 1(DL)+1(EQ SRSS +X)-0.3(EQ SRSS +Z)+0.3(EQ SRSS +Y) 199 1(DL)+1(EQ SRSS +X)+0.3(EQ SRSS +Z)-0.3(EQ SRSS +Y) 200 1(DL)+1(EQ SRSS +X)-0.3(EQ SRSS +Z)-0.3(EQ SRSS +Y) 201 1(DL)-1(EQ SRSS +X)+0.3(EQ SRSS +Z)+0.3(EQ SRSS +Y) 202 1(DL)-1(EQ SRSS +X)-0.3(EQ SRSS +Z)+0.3(EQ SRSS +Y) 203 1(DL)-1(EQ SRSS +X)+0.3(EQ SRSS +Z)-0.3(EQ SRSS +Y) 204 1(DL)-1(EQ SRSS +X)-0.3(EQ SRSS +Z)-0.3(EQ SRSS +Y) 205 1(DL)+0.3(EQ SRSS +X)+1(EQ SRSS +Z)+0.3(EQ SRSS +Y) 206 1(DL)-0.3(EQ SRSS +X)+1(EQ SRSS +Z)+0.3(EQ SRSS +Y) 207 1(DL)+0.3(EQ SRSS +X)+1(EQ SRSS +Z)-0.3(EQ SRSS +Y) 208 1(DL)-0.3(EQ SRSS +X)+1(EQ SRSS +Z)-0.3(EQ SRSS +Y) 209 1(DL)+0.3(EQ SRSS +X)-1(EQ SRSS +Z)+0.3(EQ SRSS +Y) 210 1(DL)-0.3(EQ SRSS +X)-1(EQ SRSS +Z)+0.3(EQ SRSS +Y) 211 1(DL)+0.3(EQ SRSS +X)-1(EQ SRSS +Z)-0.3(EQ SRSS +Y) 212 1(DL)-0.3(EQ SRSS +X)-1(EQ SRSS +Z)-0.3(EQ SRSS +Y) 213 1(DL)+0.3(EQ SRSS +X)+0.3(EQ SRSS +Z)+1(EQ SRSS +Y) 214 1(DL)-0.3(EQ SRSS +X)+0.3(EQ SRSS +Z)+1(EQ SRSS +Y) 215 1(DL)+0.3(EQ SRSS +X)-0.3(EQ SRSS +Z)+1(EQ SRSS +Y) 216 1(DL)-0.3(EQ SRSS +X)-0.3(EQ SRSS +Z)+1(EQ SRSS +Y) 217 1(DL)+0.3(EQ SRSS +X)+0.3(EQ SRSS +Z)-1(EQ SRSS +Y) 218 1(DL)-0.3(EQ SRSS +X)+0.3(EQ SRSS +Z)-1(EQ SRSS +Y)
  29. 29. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 18 219 1(DL)+0.3(EQ SRSS +X)-0.3(EQ SRSS +Z)-1(EQ SRSS +Y) 220 1(DL)-0.3(EQ SRSS +X)-0.3(EQ SRSS +Z)-1(EQ SRSS +Y) Design of the compressor shelter is carried out in STAAD-PRO (Series 4) using IS CODE 800-2007 standards. Following are the various parameters, which are given for the design purpose. This procedure is same for all the exercise. 3.8 DESIGN PARAMETERS Table 3.4 Design parameters PARAMETER VALUE DESCRIPTION CODE - Must be specified as IS800 LSD Design Code to follow. See section 5.48.1 of the Technical Reference Manual. ALPHA 0.8 A Factor, based on the end connection type, controlling the Rupture Strength of the NetSection, as per Section 6.3.3: 0.6 = For one or two bolts 0.7 = For three bolts 0.8 = For four or more bolts CMX 0.9 Equivalent uniform moment factor for Lateral Torsional Buckling(as per Table 18, section 9.3.2.2) CMY 0.9 Cm value in local Y axes, as per Section 9.3.2.2. CMZ 0.9 Cm value in local Z axes, as per Section 9.3.2.2. DFF None (Mandatory for deflection check) "Deflection Length" / Maximum allowable local deflection.
  30. 30. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 19 BEAM 1.0 0.0 = design at ends and those locations specified by the SECTION command. 1.0 = design at ends and at every 1/12th point along member length (default). 0 = Minimum detail 1 = Intermediate detail level 2 = Maximum detail DJ1 Start Joint of Member Joint No. denoting starting point for calculation of "Deflection Length”. DJ2 End Joint of Member Joint No. denoting end point for calculation of "Deflection Length". FU 420 MPA Ultimate Tensile Strength of Steel in current units. FYLD 250 MPA Yield Strength of Steel in current units. KX 1.0 Effective Length Factor for Lateral Torsional Buckling (as per Table‐ 15, Section 8.3.1) KY 1.0 K value in local Y‐axis. Usually, the Minor Axis. KZ 1.0 K value in local Z‐axis. Usually, the Major Axis. LX Member Length Effective Length for Lateral Torsional Buckling (as per Table‐ 15, Section 8.3.1) LY Member Length to calculate Slenderness
  31. 31. GTU TEAM ID 1098 DESIGN CRITERIA CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 20 Length Ratio for buckling about local Y axis. LZ Member Length Same as above except in Z‐axis (Major). MAIN 180 Allowable Slenderness Limit for Compression Member (as per Section 3.8) TMAIN 400 Allowable Slenderness Limit for Tension Member (as per Section 3.8) RATIO 1.0 Permissible ratio of the actual to allowable stresses. TRACK 2 which results are reported. 0 = Minimum detail 1 = Intermediate detail level 2 = Maximum detail
  32. 32. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 21 CHAPTER 4 ANAYSIS AND DESIGN OF COMPRESSOR SHELTER
  33. 33. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 22 This chapter is focused on structural modeling ,analysis and design of compressor shelter . Analysis and design of compressor shelter is carried out using STAAD. Pro (Series 4) software. 4.1 GENERAL 4.2 STRUCTURAL MODELING OF COMPRESSOR SHELTER Figure 4.1 3D model of shelter 1.As shown in fig. 3D model of compressor shelter is prepared in STAAD. Pro2006. 2.Support condition are as follows: Table 4.1 Support condition MEMBER X-DIRECTION Z-DIREXTION COLUMN BASE PINNED PINNED 3.Staility to the structure is provided by the following conditions. Transverse direction : Rigid frame Longitudinal direction :Braced frame
  34. 34. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 23 Figure 4.2 Transverse Direction 4.The longitudinal direction are usually designed with brace frame due to less access requirements. the brace frame are effective structural forms for providing stiffness. Figure 4.3 Longitudinal Direction 4.2.1 Member And Node Nnumber For member and node number refer to staad file in attachments. For GI sheeting Thickness = 0.80mm 4.3 DEAD LOAD Load = 0.069kN/m2 Fixing load = 0.025kN/m Service load = 0.100kN/m 2 Total load = 0.194kN/m 2 2
  35. 35. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 24 For 8 m bay, roof dead load =0.194 x 8 x 18 = 27.93kN/m weight of purlin = 0.2 x 8 = 1.60kN 2 self weight of truss = 0.130 x 8 x 18 = 18.72 kN Foe welded sheet roof truss, self weight(w) = 53.7 + 0.53(A) = 53.7 + 0.53(8 x 18) = 0.130kN/m • Loads in staad.PRO 2 Dead load due to sheeting = Load due to weight of sheet x Distance between purlin x Distance between two columns = 0.194 x 1.4 x 8 = 2.173kN Dead load due to purlin = Weight of purlin (ISMC 400, Steel table) x distance between two columns = 0.2kN/m x 8m =1.6kN Total Dead Load = 2.173 + 1.600 = 3.773kN ……….. say 3.78kN Figure 4.4 Bending Moment Due To Dead Load Live load =0.75-((18.43 4.4 LIVE LOAD ( AS PER IS 875 PART-2) 0 - 100 =0.5814kN > 0.4 (OK) )0.02) Table 2 Pg 14 • Load in staad.PRO
  36. 36. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 25 Live Load Live Load = 0.75-((18.430 - 100)0.02) (Table 2, Clause 4.1, Pg.14) =0.5814kN > 0.4 (OK) Total Load Applied On Node =0.5814 x 1.4 x 8 =6.512kN Figure 4.5 Bending Moment Due To Live Load WIND SPEED CALCULATION 4.5WIND LOAD (AS PER IS 875 PART-3) Place = mangalore Basic wind speed = 39m/s Wind force = (Cpe-Cpi) x A x P , Where Cpi = ±0.5 Angle of roof = 18.430 Height of building = 11.5m(h) Short dimension of building in plan = 18m(w) h/w = 0.6388 > 0.5 As per IS 875 Part -3
  37. 37. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 26 α = 18.43o For 0 by interpolation method 0 Cpe = -0.85 (windward direction) Cpe = -0.5 (leeward direction) (wind angle) For 900 Cpe = -0.8 (windward direction) Cpe = -0.6 (leeward direction) (wind angle) • Design wind speed, Vz Vz = K1 x K2 x K3 x K4 Risk co-efficient (K1) assume K1 = 1 ( i.e life is 50 year) Terrain category = 1 and Class A1 so K2 = 1.09 K3 it is assume as 1 (as per is 875 part - 3) • Wind pressure calculation Total height of building = 16.14m and Vb = 39m/s design wind speed, Vz = K1 x K2 x K3 x K4 = 1 x 1.09 x 1 x 39 = 42.51m/s Therefore Design wind pressure Pd = 0.6Vz2 = 0.6(42.51)2 = 108.4N/m2 = 1.084kN/m Table 4.2 Wind force in Windward and Leeward 2 WIND ANGLE Cpe Cpi Cpe ± Cpi A x Pd WIND FORCE WINDWARD LEEWARD 00 -0.8 -0.5 -0.5 -1.3 -1 12.36 -16.07 -12.36 +0.5 -0.3 0 12.36 -3.70 0 90 -0.8 0 -0.6 -0.5 -1.3 -1.1 12.36 -16.07 -13.60 +0.5 -0.3 -0.1 12.36 -3.70 -1.24
  38. 38. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 27 • Wind Load In Staad.Pro Wind Load On Roof Wind load Wind ward Lee ward Wind ward Lee ward Roof angle Wind ward(Load kN) Lee ward(Load kN) Directio n H sinα H cosα H sinα H cosα WL(+X) -16.07 -12.36 -16.07 -12.36 18.43° 5.08 15.24 5 3.9 11.7 2 WL(-X) -3.7 0 -5.08 15.24 5 -3.9 11.7 2 WL(+Z) -16.07 -13.6 -16.07 -13.6 5.08 15.24 5 4.3 12.9 WL(-Z) -3.7 -1.24 -5.08 15.24 5 -4.3 12.9 • Wind Force On Column (IS 875-1987, Part 3, Table 4, Clause 6.2.2.1, pg.14) Wind Angle Wind ward Lee ward Wind ward Lee ward CPI CPE+/-CPI A B C D A B C D 0° 0.7 -0.3 -0.7 -0.7 0.5 1.5 0.2 -0.2 -0.2 -0.5 0.2 -0.8 -1.5 -1.5 90° -0.5 -0.5 0.7 -0.1 0.5 0 0 1.5 0.4 -0.5 -1 -1 0.2 -0.6 Load(kN) Wind Pressure(Pd) x Bay Length(l) A B C D 1.084 x 8 = 8.872 13.008 1.734 -1.734 -1.734 1.734 -6.938 -13.008 -13.008 0 0 13.008 3.469 -8.672 -8.672 1.734 -5.203
  39. 39. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 28 Figure 4.6 Bending Moment Due To Wind Load In +X Direction Figure 4.7 Bending Moment Due To Wind Load In -X Direction
  40. 40. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 29 Figure 4.8 Bending Moment Due To Wind Load In +Z Direction Figure 4.9 Bending Moment Due To Wind Load In -Z Direction
  41. 41. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 30 Design Spectrum, Ah 4.6 SEISMIC LOAD IN STAAD.PRO Ah = (Z x I x Sa) / (2 x R x g) Z/2 = 1.0 (As per Doc. No. 6812-9-2554-0138, Page No-3) I = 1.75 (As Structure falls under Category 2,As per IS 1893 (P-4) : 2005)) R = 4 (Considering STEEL FRAME WITH CONCENTRIC BRACES,As per IS 1893 (P-4) : 2005)) Damping = 2% (For STEEL structure) For Seismic load in X = (Z/2) x (I/R) = 1.0 x (1.75/4) = 0.4375 For Seismic load in Z = (Z/2) x (I/R) = 1.0 x (1.75/4) = 0.4375 For Seismic load in Y = (2/3) x 0.5 = 0.291 (1) Lump mass shall be calculated in separate STAAD file by providing release of Fx, Fz, Mx, My & Mz at the junction of beams & columns. While calculating Lump Mass consider DL, % of LL, P(O) loads. LL shall be reduced 50%, when LL > 3 Kn/sqm (IS 1893 (P-I) : 2002 & Cl. No. 7.3.2) Equipment Operating Weight Shall not be considered in above calculation. (2) Support reaction from Lump Mass STAAD File shall be provided in +ve direction in below space.
  42. 42. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 31 Figure 4.10 Bending Moment Due To Siesmic Load In +X Direction Figure 4.11 Bending Moment Due To Siesmic Load In +Z Direction
  43. 43. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 32 Figure 4.12 Bending Moment Due To Siesmic Load In +Y Direction 4.7 DESIGN OF PURLIN Span of purlin = 8m spacing of purlin = 1.4m Dead load = 0.194kN/m Wind pressure = 1.084 x 1.3 = 1.4092 kN/m 2 2 • LOAD COMBINATION 1. DEAD LOAD + LIVE LOAD DD+LL = 0.194 + 0.581 = 0775kN/m2 Wz = (0.775 x cos18.430 = 1.03kN/m ) x 1.4 Wy = (0.775 x sin18.43 2 0 = 0.34kN/m ) x 1.4 Mz = 1.5 x 1.03 x 8 2 2 = 9.89kNm /10 My = 1.5 x 0.34 x 82 = 3.26kN/m /10 Sfz = 1.5 x 1.03 x 8/2 = 6.18kN
  44. 44. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 33 Assume ISMC-200 (purlin) Properties of ISMC 200 h=D=200mm Izz = 1819.3 x 104 mm bf = 75mm Zez = 181.9 x 10 4 3 mm ft = 11.4mm Zey = 26.3 x 10 3 3 mm tw = 6.1mm Zpz = 211.25 x 10 3 3 mm Zpy = 40.716 x 10 3 3 mm Now, 3 Section classification bf/tf = 75/11.4 = 6.54 < 9.4 d/tw = (200-(2 x 11.4))/6.1 = 29.04 < 42 Hence section is plastic • SHEAR CAPACITY (IS 800-2007, Clause 8.4, pg.59) Av = (200 x 6.1) = 1220mm Shear capacity = 𝐴𝑣 ∗ 𝑓𝑦 √3∗ 𝛾𝑚𝑜 ` = (1220 x 250)/(1.73 x 1.1 x 10 2 3 ) = 160.273 > 6.3kN (OK) Shear capacity is greater than shear force hence OK • MOMENT CAPACITY (IS 800-2007, Clause 8.2.1.2, pg.53) 𝑀𝑑𝑧 = 𝛽𝑏 ∗ 𝑍𝑝𝑧 ∗ 𝑓𝑦 γmo Mdz = (1 x 211.25 x 103 x 250)/1.10 x 10 = 48.01kNm 6 Mz = (1.2 x 181.9 x 103 x 250)/1.10 x 10 = 49.60kNm < Mdz ….. OK 6 Hence Mdz > Mz, The assumed section is safe. Mdy = (1.0 x 40.716 x 103 x 250)/1.10 x 10 = 9.25kNm 6 My = (1.2 x 26.3 x103 x 250)/1.10 x 10 = 7.17kNm < My .....OK 6 Hence Mdy > My The assumed section is safe Figure 4.13 ISMC CHANNEL 200
  45. 45. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 34 • CHECK FOR AXIAL BENDING (IS 800-2007, Clause 9.3.1.1, pg.70) 𝑀𝑧 𝑀𝑑𝑧 + 𝑀𝑦 𝑀𝑑𝑦 ≤ 1 Therefore, 0.55 < 1 ......OK • CHECK FOR DEFLECTION 𝛿 = 5𝑊𝐿3 384𝐸𝐼 W= 1.03 x 8 = 8.24kN 𝛿 = 5∗8.24∗1000∗ 80003 384∗2∗105∗1819.3∗ 104 = 15.09mm Deflection limit is L 150 (IS 800-2007, Table- 6, pg.31) = 8000 150 = 53.33mm > 15.09mm ..... (OK) 2. DEAD LOAD + WINDLOAD Load normal to slope = -2.586+0.194cos18.430 =-2.39kN/m Load parallel to slope = 0.194sin18.430 = 0.07kN/m 2 2 Wz = 2.39 x 1.4 = 3.346 kN/m Wy =0.07 x 1.4 = 0.098kN/m 2 Mz = 1.5 x3.346x 8 Mdz = 48.01kNm > Mz ..... (OK) = 32.12kNm My = 1.5 x 0.098 x 82 Mdz = 9.25kNm > My ..... (OK) /10 = 0.940kNm Hence assumed channel section for purlin is OK. 4.8 CRANE LOAD DATA OF GANTRY
  46. 46. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 35 Figure 4.14 Gantry Data • DATA FOR 15T CRANE CAPACITY Centre-to-centre distance between column =8.0 m Crane capacity =15T Self-Weight of the crane girder = 24400 kg Self-Weight of Crab = 6000 kg Minimum hook approach (L1 Distance between wheel centre (c) =3.6m ) = 1.3m Centre-to-centre distance between gantry rail (Lc Self-weight of rail section = 300N/m ) = 14.9m Yield stress of steel =250Mpa SOLUTION 1. Load and bending moment calculations (a) Load (i) Vertical loading • Calculation of maximum static wheel load Maximum static wheel load due to the weight of the crane =180.44/4 = 45.11kN Maximum static wheel load due to crane load
  47. 47. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 36 W1 = [Wt(Lc - L1)]/(2Lc • Total load due to weight of crane =95.25 + 45.11 =140.36kN ) =[(150+60)(14.9-1.3)/2x14.9]=95.25kN To allow for impact this load should be multiplied with 25% (IS 800 TABLE 12.3) Design load =165.625kN Therefore factored design load =1.5 x 165.625 = 249 kN (ii) Lateral (horizontal ) surge load • Lateral load per wheel =10%( hook + crab load)/4 =0.1 x (150+60)/4 =5.225kN • Factored lateral load = 1.5 x 5.225 = 7.8375kN (iii)Longitudinal (horizontal ) braking load • Horizontal force along rails = 5% of wheel load =0.05 x 165.625 = 8.281kN • Factored load = 1.5 x 8.281 = 12.42kN (b)Maximum bending moment (i)Vertical maximum bending moment • Without considering the self weight , The bending moment is maximum when the two loads are in such a position that the centre of gravity of the wheel loads and one of the wheel loads are equidistant from the centre of gravity of the girder. M1 = Wc M L/4 = 249 x8/4 = 498 kNm 2 = 2Wc(L/2-c/4)2 /L = 2 x 249(8/2-3.6/4)2 Hence M = 598.2kNm /8 = 598.2kNm
  48. 48. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 37 • Assume that the self weight of the gantry girder is 1.86kN/m Total dead load = 1860 + 300 = 2.160kNm Factored dead load =2.16 x 1.5 = 3.24 kNm BM due to dead load = wl2 (ii)Horizontal bending moment /8 = 25.92kNm • Moment due to surge load = 2 x 7.83(8/2-3.6/4)2 My = 20.06kNm /7.5 (iii)Bending moment due to drag (assuming the height of rail as 0.15m& depth of girder as 0.6m) • Reaction due to drag force = 12.42 x (0.3+0.15)/8 =0.698kN M3 Therefore, Total design bending moment = R(L/2-c/4) = 0.698(8/2-3.6/4) = 2.1638kNm Mz (c)Shear force =598.2+2.1638 = 600.36 (i)Vertical shear force • Shear force due to wheel load WL Shear force sue to dead load =wl/2 = 12.92kN (2-c/L) = 249(2-3.6/8) = 385.95kN Maximum ultimate shear force = 385.95 + 12.92 = 398.91 (ii)Lateral shear force due to surge load Vy Reaction due to drag force = 0.698kN = 7.83(2-3.6/8) = 12.1365kN And maximum ultimate reaction Rz = 398.91 + 0.698 = 399.608
  49. 49. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 38 For Section selection UB BEAM 610x229x140 with MC 400 at its top Properties of section UB BEAM MC400 A=17800mm2 A=6380mm t 2 f= 22.1mm tf t =15.3mm w=13.1mm tw B=230.2mm B=100mm =8.8mm Izz=111777 x 104 mm4 Izz=15200 x 104 mm I 4 yy=4505 x 104 mm4 Iyy=508 x 104 mm R=12.7mm Cy=24.2mm 4 h=617.2mm R1=15.0mm R2=8.0mm 1. Elastic properties of the combined section Total area = 17800 + 6380 = 24180mm The distance of NA of the built-up section from the extreme fiber of tension flange 2 Ӯ= [17800 x 617.2/2 + 6380 x (617.2 + 24.2 - 8.8)]/24180 = 385.9621mm h1 = Ӯ -hB =385.96 - 617.2/2 = 77.36mm /2 h2 = (hB + tch) - Ӯ - C =(617.2 + 8.8) -385.96 - 24.2 y = 215.84mm h3 = (hB + tch) - Ӯ - tw = (617.2 + 8.8) -385.96 -8.8) = 231.24mm Figure 4.15 UB 610 With MC400 at its Top
  50. 50. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 39 Iz = IzB + ABh1 2 + (Iy)ch + Achh2 = 111777 x 10 2 4 + 17800 x (77.36)2 + 508 x 104 + 6380 x (215-84) = 1.52 x 10 2 9 mm Z 4 zb = 1.52 x 109 = 3.95 x 10 /385.96 6 mm Z 3 bt = 1.52 x 109 = 6.189 x 10 /(617.2+15.3-385.96) 6 mm I 3 yy combined = 4505 x 104 + 15200 x 10 = 19705 x 10 4 4 mm I 4 y I for tension flange about y-y axis tf = 22.1 x (230.2)3 /12 = 2246.6 x 104 mm I 4 y I for compression flange about y-y axis cf =2246.6x 104 + 15200 x 104 = 17446.6 x 104 mm Z 4 y(for top flange only) =17446.6 x 104 =87.233 x 10 /200 4 mm 2. Calculation of plastic modulus 3 The plastic neutral axis divides the are in to two equal area i.e 12090mm d 2 p =6380/2x tw Now, Plastic section modulus below the equal area axis is =6380/2 x 13.1 = 243.511mm Summation of AӮ = (22.31 x 230.2) x (552.11 - 22.1/2) +(552.11 - 22.1) x 13.1 x [(552.11-22.1)/2] = 4592.5 x 103 mm Plastic section modulus above the equal area axis is 3 Summation of AӮ = 6380 x (73.89 - 24.2) + 230.2 x 22.1 x(73.89 - 8.8 - 22.1/2) + (73.89 - 8.8 - 22.1) x 13.1 x(73.89 - 8.8 - 22.1)/2 = 604.05 x 103 mm3
  51. 51. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 40 Therefore, Zpz = 4592.5 x 103 + 604.05 x 103 = 5196.55 x 103 mm For top flange only 3 Zpy =22.1 x (230.2)2 /4 + (400 - 2 x 15.3)2 x 8.8/4 + (2 x 100 x15.3)x (200 - 15.3/2) = 1181576.013 mm 3. Check for moment capacity 3 • Check for plastic section b/t of the flanges of the I-beam = [(230.2-13.1)/2x22.1] =4.9117 < 9.4 b/t of the flanges of the channel = (1000 - 8.8)/15.3 = 5.960 < 9.4 d/t of the web of the I-section = (617.2 - 2 x 22.1)/13.1 = 43.74 < 84 Hence the section is plastic • A local moment capacity 1.2Zefy/1.1 = 1.2 x 3.95 x106 M x (250)/1.1 = 1077.27kN dz = fyZp/1.1 = (250/1.1) x 5196.55 x 103 x10-3 Hence take, = 1181.03 > 1077.27kNm Mdz M =1077.29kNm dz=( fyZp/1.1) x Zp(top flange) = (250/1.1) x 1181576.013 x 106 1.2Z = 268kNm efy/1.1 = 1.2 x 872330 x 250/1.1 x 10-6 Hence take M = 237.908 < 268kNm dy • Combined local capacity check = 237.908kNm 600.36/1077.29 + 20.06/237.908 = 0.6415 < 1 Hence the section is right choice.
  52. 52. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 41 4. Check for buckling resistance As per IS 800 (clause 8.2.2), the design bending strength Md= βbZpf We have β bd b H = 617.2 + 8.8 = 626 = 1.0 KL = 8000mm E = 2 x105 N/mm T 2 f r = 22.1 + 8.8 = 30.9mm y=squareroot of Iyy I /A yy= 19705 x 104 mm A= 24180mm 4 r 2 y According to clause 8.2.2.1 of IS 800 elastic lateral buckling moment = 90.273 𝑀𝑐𝑟 = 𝐶1 𝜋2 𝐼 𝑦ℎ 2(𝐾𝐿)2 �1 + 1 20 [ 𝐾𝐿 𝑟 𝑦 ℎ 𝑡 𝑓 ]2 � 0.5 C1 = 1.132 ( from table 42 os IS 800:2007) Mcr = 3012.85 x 106 N/mm Non-dimensional Slenderness ratio : 𝜆 𝐿𝑇𝑍 = � 𝛽 𝑏 𝑍 𝑝𝑧 𝑓𝑦 𝑀 𝑐𝑟 = 0.6566 Along the z- section ø 𝐿𝑇𝑍 = 0.5[1 + 𝛼 𝐿𝑇(𝜆 𝐿𝑇𝑍 − 0.2) + 𝜆 𝐿𝑇𝑍 2 = 0.5[1+021(0.7992-0.2)+0.79922 = 0.882 ]
  53. 53. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 42 𝛸𝐿𝑇𝑍 = 1 [ø 𝐿𝑇𝑍 + (ø 𝐿𝑇𝑍 2 + 𝜆 𝐿𝑇𝑍 2 )0.5] ≤ 1 =1/[0882+(08822 -0.79922 ) = 0.7967 ≤ 1 0.5 fbd =fy 𝛸LT/γmo γmo f = 1.10 (from table 5 of code) bd =0.7635 x 250/1.1 = 173.522 N/mm Therefore, 2 Mdz = βbZpzfbd = 1.0 x 173.522 x 5196.55 x 10 =901.71kNm -3 Here, Mdz Thus the beam is satisfactory under vertical loading. now it is necessary to check it under biaxial bending =901.71 > 600.36kNm Mdz=( fyZp/1.1) x Zp = (250/1.1) x 1181576.013 x 10 (top flange) 6 = 268kNm > 237.908kNm Hence, Mdz = 237.908kNm (a)Check for biaxial bending 𝑀 𝑍 𝑀 𝑑𝑧 + 𝑀 𝑦 𝑀 𝑑𝑦 < 1 So, 600.36/901.71 + 20.06/237.908 = 07501 < 1 Hence the beam is safe. If it come more than 1 than slighty bigger size of top channel may be selected. 5.Check for shear capacity • For vertical loading
  54. 54. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 43 Vz Shear capacity = A =399.608kN vfyw = (617.2 x 13.1) x 250(√3x 1.10) x 10 (√3x1.10) = 1060.923kNm -3 The maximum shear force is 472.09kN which is less than 0.6 times the shear capacity i.e 0.6 x 1060.923 = 636.55kN Hence it is safe in vertical shear and there is no reduction in the moment capacity 6. Check for deflection Serviceability vertical wheel load excluding impact= 140.36kN • Deflection in mid span ∆=Wl3 [(3a/4L)-(a3 /L3 Where )]/(6EI) (i)Vertical Combined Izz =1.52 x 109 mm So, ∆=140.36 x10 4 3 x (8000)3 [(3x 2200)/(4x 8000) - (2200)3 /(8000)3 ]/(6 x2 x105 x 1.52 x 109 = 7.28 < L/750 =10.66 mm (Table 6 of IS 800) ) (ii)Lateral Only the compound top flange will be assumed to resist the applied surge load as in the bending check I = (IZch)+ IF = 17446.6x 104 mm ∆ =5.225 x 10 4 3 x(8000)3 [(3 x2200)/(4x8000)-(2000)3 /(8000)3 ]/6 x 2 x105 x 17446.6 x 10 = 2.368 < 10.66mm (Table 6 of IS 800) 4 Hence the section is capable for gantry girger beam UB BEAM 610x229x140 with MC400 channel at its top.
  55. 55. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 44 4.9 DESIGN OF FOUNDATION 1. DESIGN OF FOOTING F1 Design of footing is as per IS code :456-2000 1.1 DATA Governing load cases (kN) Table 4.3 Governing Loads For Footing Load combination Fx Fy Fz 110 207.166 572.949 3.252 82 166.291 766.687 36.674 139 2.542 59.196 171.839 Table 4.4 Load at the base of foundation Lc Fx Fy Fz Mx Mz 110 207.166 572.949 3.252 621.498 9.756 82 166.291 766.687 36.674 498.87 110.02 139 2.542 59.196 171.839 7.626 515.51 GEOMETRY OF FOOTING
  56. 56. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 45 Figure 4.16 Geometry of Footing D1 =2.7m D2 =1.0m H1 =0.75m H3 =0.30m H6 =2.25m H2 =2.55m A1 =area of footing =2.7 x 5.5 =14.85 m A2 =area of pedestal =1 x 1.45 =1.45m 2 1.2 FOUNDATION WEIGHT 2 w1 =weight of footing =A1 x H1 x γ = 14.85 x 0.75 x 30 c = 334.125kN w2 =weight of pedestal = A2 x H2 x γ = 1.45 x 2.55 x 30 c =110.925kN Total foundation weight =334.125+110.925 = 445.05kN
  57. 57. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 46 1.3 BEARING CAPACITY CHECK Section Moduls Zx=13.86m3 , Zz=6.932m Area of Footing =14.85m 3 Table 4.5 Bearing Capacity Check 2 LC CASE P/A Mx/Z Mx z/Z Pmaxz Pmin A.SBC CHECK 110 38.58 44.84 1.40 84.82 7.66 250 OK 82 51.64 35.49 15.86 103.86 0.21 250 OK 139 3.93 0.58 73.57 78.08 70.22 250 OK Footing is safe in soil bearing capacity 1.4STABILITY CHECK 1.4.1FOR OVERTURNING FACTOR OF SAFETY=Stabilising Moment(St.Mo)/Overturning Moment(Ot.Mo) Table 4.6 Overturning Moment Check X –direction CASE P D/2 St.Mo Ot.Mo FS MIN. FS CHECK 110 572.94 1.375 787.79 621.498 1.26 1.2 OK 82 766.87 1.375 1054.44 498.87 2.11 1.2 OK 139 59.196 1.375 81.39 7.626 10.67 1.2 OK Z-direction CASE P D/2 St.Mo Ot.Mo FS MIN. FS CHECK 110 572.949 1.375 787.7 9.756 80.75 1.2 OK 82 766.87 1.375 1054.44 110.02 9.58 1.2 OK 139 59.196 1.375 81.39 515.51 0.15 1.2 OK
  58. 58. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 47 1.4.3FOR SLIDING FACTOR OF SAFETY = (DOWNWARD WT OF FOOTING)*FRICTION COEFFICIENT)/FORCE IN X OR ZDIECTION Table 4.7 Sliding Check X-direction CASE TOTAL WEIGHT FORCE FS MIN. FS CHECK 110 1017.9 207.166 1.9 1.2 OK 82 1211.92 166.291 2.9 1.2 OK 139 504.246 2.542 155 1.2 OK Z-direction CASE TOTAL WEIGHT FORCE FS MIN. FS CHECK 110 1017.9 3.252 125 1.2 OK 82 1211.92 36.074 13 1.2 OK 139 504.246 171.839 1.2 1.2 OK 2. MEMBER DESIGN 2.1 DESIGN OF FOOTING Assume D =750mm =0.75m d = Effective Depth = 250mm For higher shear criteria d =d x 2 =500mm =0.5 m fck=30N/mm fy=250N/mm 2 2
  59. 59. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 48 %𝑝𝑡 = 50 𝑓𝑐𝑘 𝑓𝑦 �1 − �1 − 4.6𝑀𝑢 𝑓𝑐𝑘 𝑏𝑑2 � Where, Mu=0.148 x fck x bd2 = 0.148 x 30x 2750 x 2502 Therefore, %pt = 0.534% = 763.125 kNm Ast = 7342.5mm for X-direction =%pt/100 x bd = 0.534/100 x 2750 x 500 PROVIDE 16 BARS OF 25 DIA IN X-DIRECTION AT BASE IN X DIRECTION 2 • Ast =0.534 x 5500 x 500 for Y-direction = %pt/100 x bd = 14685 mm PROVIDE 30 BARS OF 25 DIA IN Y-DIRECTION AT BASE IN Y DIRECTION 2 2.2CHECK FOR SHEAR 2.2.1 ONE WAY SHEAR CHECK IN X-DIRECTION For one way shear check critical section is taken at distance d, from face of column Where, d is effective depth Vu Where, Uplift force = Factored load/Area of footing = 766.687/2.7x 5.5 = 50.90kN/m = uplift force x 5.5 x d V 2 u τv= V = 140kN u/bd = 140 x 103 = 0.102N/mm /2750 x 500 2 Figure 4.17 One Way Shear Check
  60. 60. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 49 %pt= 100Ast/bd = 100 x 7850/2750 x 500 =0.570% From IS 456:2000, table 19 By interpolation method ,τc= 0.509N/mm So τc > τv hence ...............OK 2 ONE WAY SHEAR CHECK IN Y-DIRECTION Vu Τv = V = 50.90 x 2.75 x 0.5 = 69.98kN u/bd = 70 x 103 /5500 x 500 = 0.025N/mm %pt= 100Ast/bd 2 = 100 x 14718.75/5500 x 500 = 0.532 % From IS 456:2000, table 19 By interpolation method, τc= 0.50N/mm So τc > τv hence ...............OK 2 2.2.2 TWOWAY SHEAR CHECK For two way shear check critical section is taken at 0.5d from face of column d= effective depth For X-direction Length of critical section bo = 4(1000+250+250) =4b' Figure 4.18 Two Way Shear Check
  61. 61. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 50 = 6000mm Vu = 50.9(10.09) = Uplift pressure x (15.125-5.03) = 513.835kN Τv =Vu/bod =513.835/6000x500 = 0.171N/mm τc = 0.25√𝑓R ck 2 = 0.25√30 = 1.369N/mm So, τc > τv.......................OK 2 For Y-direction Length of critical section bo V =4b' = 4(1450+2500+250) = 7800mm u = 50.9(10.09) = Uplift pressure x (15.125-5.03) = 513.835kN Τv =Vu/bo =513.835/7800x500 d = 0.132N/mm τc = 0.25√𝑓R ck 2 = 0.25√30 = 1.369N/mm So, τc > τv.......................OK 2
  62. 62. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 51 3.DESIGN OF PEDESTAL Assume size = 1000mm x 1450mm Axial load = 766.91kN fck=30N/mm fy=415N/mm 2 Assume 0.8% of steel tp provide in pedestal (IS CODE 456:2000 PG 48 cl 26.5.3.1(h)) 2 Asc provided = 0.008 x Ag(100 x 1450) = 11600 PROVIDE 24 BAR OF 25 DIA • Diameter of lateral ties is minimum of following (IS CODE 456 PG 49) (i) 1/4 x 25 = 6.25mm (ii) 6mm So, use 8mm dia ties • Pitch for lateral ties is minimum of following (IS CODE 456:2000 PG 49) (i)Least lateral dimension= 1000mm (ii)16 x dia of bar = 16 x 25 = 400mm (iii)300 mm Taking smaller of these value Therefore, pitch = 300mm PROVIDE 8 DIA TIES @ 300MM C/C . Figure 4.19 Foundation Rebar Arrangement
  63. 63. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 52 DATA 4.10 DESIGN OF BASE PLATE & ANCHOR BOLTS Anchor bolt dia. = 36mm Total nos = 8 Bolt in tension = 4 Area of one bolt = 1017mm Total area in tension = 4068mm 2 Allowable tensile capacity = 175kN 2 Allowable shear capacity = 145.85kN Modular ratio of elasticity(m) = Es/Ec = 2x105 P / 280000 = 7.143 c C = Width of base plate = 900mm = 766.87kN • For value of Y, Pt If ∑v=0, sc = s x (P & sc t+Pc If ∑m=0, P ) / (Y x C) c = -Pt Elastic behavior of concrete support , -P (D/2 –Y/3 + f)/(D/2 – Y/3 – e) t / (As Solving above 3 equations, Y x sc x m) = (D/2 – Y/3 + f)/Y 3 + 3 x (e - D/2)Y2 + (8 x m x As x (f+e) / C)Y - (8 x m x As K x (f+e) / C) + (D/2 + f) = 0 1 K = 3 x (e - D/2) = -1350 2 = 8 x m x As K x (f+e) / C = 36677.30 3 = -k2 So Y=1322.88mm + (D/2 + f) = -24317049.9 Pt = 315.04kN (by 2nd Max. pressure below base plate (sc) = 1.82 Equation) • Tension check = Pc x (D/2 – Y/3 - e) / (D/2 – Y/3 + f) =31.883kN Tension in each bolt =31.883/4 = 7.970kN < 175kN (hence ok) • Shear check
  64. 64. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 53 Total shear force = (fx 2 + fy 2 )1/2 = (207.1662 + 171.832 )1/2 Shear in each bolt = 268.49/8 =33.565kN < 143.85kN = 268.49kN Check for combined stress = (ft / Ft) + (fv / Fv • Design ) = (7.970/175) + (33.565/143.85) = 0.275 < 1.4 (hence ok) Case:1 Corner of base plate a = 210mm b = 324mm a/b = 0.648 Bending stress = 0.5 Maximum pressure below base plate (sc) = 2 x (Pt+Pc Permissible bending stress = 0.6(f ) / (Y x C) = 1.82 y) = 150N/mm Permissible stress = (b x sc x b 2 2 )/t2 So, t = 26mm Case:2 Middle of base plate a = 236mm b = 424mm a/b = 0.55 Bending stress coefficient = 0.360 So, t = 29mm Case: 3 Edge of base plate a = 324mm b = 427mm figure 14.20 Corner of Base Plate Figure 14.21 Middle of Base Plate Figure 14.22 Edge of Base Plate
  65. 65. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 54 a/b = 0.75 Bending stress coefficient = 0.555 So, t = 36mm Hence provide 36mm base plate (take max. of three cases) • Roark’s chart Table 4.8 Roark’s Chart a/b Bending coefficient 0.5 0.360 0.6 0.444 0.7 0.528 0.8 0.582 0.9 0.642 1.0 0.672 1.2 0.720 1.4 0.756 1.5 0.770 2.0 0.792 >2.0 0.798
  66. 66. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 55 GANTRY BRACKET TO COLUMN FLANGE 4.11 CONNECTION Properties of section Table 4.9 Property Of Section SECTION h B t tw If Izz AREA (A)yy COLUMN HEA 700 690mm 300mm 14.5mm 27mm 215301.3 mm 513.89 mm 4 260.474 BEAM UB 533 533.1mm 209.3 10.1mm 15.6mm 55230mm 2389 mm4 117cm4 4 Let us assume throat thickness equal to unity total height of UB Beam is 533.1 Lw = 2 x 209.3 +2 x 476.5 =total length of weld = 1371.6mm moment of inertia of weld Izz=2 x [209.3 x 1/12 x (476.5/2)2 ] + 2 x (476.5)2 = 54980278.68 mm /12 Z = I 4 zz/y =54980278.68/(533.1/2) max = 206267mm Direct shear stress = 380 x 100/1371.6 3 =27.7048N/mm Bending stress = M/Z = 242566/206267 = 1170N/mm Resultant stress = [(27.708)2 +(1170)2 ] =1170.32N/mm 0.5 Figure 14.23 Gantry to Column Connection
  67. 67. GTU TEAM ID 1098 ANALYIS AND DESIGN OF COMPRESSOR SHELTER CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 56 Now strength of weld of 1mm length = tf = 0.7 x S x 158 x design strength of weld therefore 0.7 x S x 158 = 1170.32 S = 10.58mm=11mm So provide 11mm weld all around the beam Design of channel use to support the gantry bracket to column. Assume ISMC 200 A = 2850mm r = 11mm 2 Assuming two bolts at each end and fixed connection. (from table-12 of IS-800 2007) K1 = 0.20 K2 = 0.35 K3 ɛ = (250/f = 20 y)0.5 ʎ = 1.0 vv = (L/r)/(ɛ x (pi2 x E / fy)0.5 ʎ ) = 1.98 0 = (Lw+Lf)/( ɛ x (pi2 x E / fy) / 250)0.5 ʎ = 0.246 e = (k1 + ʎvv 2 k2 + ʎ0 2 k3)0.5 f = 1.66 cd = (fy/ɣmo)/(ɸ+(ɸ2 -ʎe 2 )0.5 ) = 1839.92N/mm P 2 d = fcd (hence assumed member is ok) x A = 5244kN > 156.97kN Figure 14.24Gantry beam stay
  68. 68. GTU TEAM ID 1098 STAAD.PRO RESULTS CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 57 CHAPTER 5 STAAD.PRO Results
  69. 69. GTU TEAM ID 1098 STAAD.PRO RESULTS CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 58 Input 5.1 Materials Table 5.1 Materials Mat Name E (kN/mm2 ν ) Density (kg/m3 α ) (/°C) 1 STEEL 205.000 0.300 7.83E 3 12E -6 5.2 Basic Load Cases Table 5.2 Basic Load Cases Number Name 1 DL 2 CL 3 LL 4 WL +X 5 WL –X 6 WL +Z 7 WL –Z 8 EQ SRSS +X 9 EQ SRSS +Z 10 EQ SRSS +Y
  70. 70. GTU TEAM ID 1098 STAAD.PRO RESULTS CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 59 Output 5.3 Node Displacement Summary Table 5.3 Node Displacement Node L/C X (mm) Y (mm) Z (mm) Resultant (mm) rX (rad) rY (rad) rZ (rad) Max X 64 136:0.9(DL) +1.5(WL+X) 97.948 0.156 0.014 97.949 -0.000 0.007 0.005 Min X 55 110:1.5(DL+(WL-X)) -97.970 0.043 -0.759 97.973 -0.000 -0.007 -0.005 Max Y 303 109:1.5(DL+(WL+Z)) -0.058 18.193 107.062 108.596 0.012 0.000 -0.000 Min Y 275 137:0.9(DL) +1.5(WL+Z) -0.189 -18.173 117.175 118.576 0.012 -0.000 -0.000 Max Z 169 137:0.9(DL) +1.5(WL+Z) 0.144 -5.761 148.961 149.072 -0.000 0.000 -0.000 Min Z 164 139:0.9(DL) +1.5(WL-Z) -0.139 -5.362 - 137.318 137.423 0.000 0.000 0.000 Max rX 3 137:0.9(DL) +1.5(WL+Z) 0.000 0.000 0.000 0.000 0.019 -0.000 0.000 Min rX 21 139:0.9(DL) +1.5(WL-Z) 0.000 0.000 0.000 0.000 -0.018 -0.000 0.000 Max rY 18 138:0.9(DL) +1.5(WL-X) 0.000 0.000 0.000 0.000 -0.000 0.007 0.024 Min rY 25 136:0.9(DL) +1.5(WL+X) 0.000 0.000 0.000 0.000 0.000 -0.007 -0.024 Max rZ 13 110:1.5(DL+(WL-X)) 0.000 0.000 0.000 0.000 -0.000 -0.007 0.024 Min rZ 24 136:0.9(DL) +1.5(WL+X) 0.000 0.000 0.000 0.000 -0.000 0.007 -0.024 Max Rst 169 109:1.5(DL+(WL+Z)) 0.130 -8.500 148.832 149.075 0.000 0.000 -0.000 5.4 Beam Displacement Detail Summary Table 5.4 Beam Displacement Beam L/C d (m) X (mm) Y (mm) Z (mm) Resultant (mm) Max X 32 136:0.9(DL) +1.5(WL+X) 3.120 100.143 0.139 0.020 100.143 Min X 38 110:1.5(DL+(WL-X)) 3.120 -100.163 0.038 -0.690 100.165 Max Y 533 109:1.5(DL+(WL+Z)) 1.942 -0.057 18.193 107.062 108.596 Min Y 515 137:0.9(DL) +1.5(WL+Z) 1.942 -0.189 -18.173 117.174 118.576 Max Z 144 137:0.9(DL) +1.5(WL+Z) 3.200 0.154 -5.604 149.011 149.117 Min Z 199 139:0.9(DL) +1.5(WL-Z) 0.800 -0.149 -5.204 -137.365 137.464 Max Rst 144 137:0.9(DL) +1.5(WL+Z) 3.200 0.154 -5.604 149.011 149.117
  71. 71. GTU TEAM ID 1098 STAAD.PRO RESULTS CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 60 5.5 Beam End Displacement Summary Table 5.5 Beam End Displacement Beam Node L/C X (mm) Y (mm) Z (mm) Resultan t (mm) Max X 32 64 136:0.9(DL) +1.5(WL+X) 97.948 0.156 0.014 97.949 Min X 38 55 110:1.5(DL+(WL-X)) -97.969 0.043 -0.758 97.972 Max Y 533 303 109:1.5(DL+(WL+Z) ) -0.057 18.193 107.062 108.596 Min Y 515 275 137:0.9(DL) +1.5(WL+Z) -0.189 -18.173 117.174 118.576 Max Z 144 169 137:0.9(DL) +1.5(WL+Z) 0.144 -5.761 148.961 149.072 Min Z 155 164 139:0.9(DL) +1.5(WL-Z) -0.140 -5.362 -137.319 137.423 Max Rst 144 169 109:1.5(DL+(WL+Z) ) 0.130 -8.499 148.832 149.075 5.6 Beam End Force Summary The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry gives the largest tension value for an beam. Table 5.6 Beam End Forces Axial Shear Torsion Bending Beam Node L/C Fx (kN) Fy (kN) Fz (kN) Mx (kNm) My (kNm) Mz (kNm) Max Fx 19 20 82:1.2(DL+LL+(WL- X)+CL) 609.368 -36.674 -2.237 0.000 0.000 0.000 Min Fx 7 29 136:0.9(DL) +1.5(WL+X) -375.510 -10.087 -0.002 0.000 -0.007 37.322 Max Fy 496 302 51:1.5(DL+LL+CL) 296.064 204.181 -0.016 -0.002 -0.575 359.209 Min Fy 497 289 51:1.5(DL+LL+CL) 294.074 -204.171 -0.483 -0.000 -0.781 -358.994 Max Fz 119 79 137:0.9(DL) +1.5(WL+Z) -325.092 -0.001 33.872 0.000 -63.387 0.015 Min Fz 116 84 139:0.9(DL) +1.5(WL-Z) -310.913 0.001 -31.339 0.000 58.127 -0.015 Max Mx 427 106 108:1.5(DL+(WL+X)) 31.293 -34.860 5.163 3.738 -0.117 -26.938 Min Mx 135 107 108:1.5(DL+(WL+X)) 35.268 -29.551 -4.374 -3.740 0.301 -24.634 Max My 33 84 139:0.9(DL) +1.5(WL-Z) -308.957 0.001 9.986 -0.000 58.127 -0.015 Min My 42 79 137:0.9(DL) +1.5(WL+Z) -323.135 -0.001 -10.952 0.000 -63.387 0.016 Max Mz 15 71 137:0.9(DL) +1.5(WL+Z) -213.115 -32.677 0.372 0.000 0.016 879.939 Min Mz 458 71 137:0.9(DL) +1.5(WL+Z) -119.877 -168.001 0.344 0.015 -0.005 -879.936
  72. 72. GTU TEAM ID 1098 STAAD.PRO RESULTS CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 61 Sign convention as diagrams:- positive above line, negative below line except Fx where positive is compression. Distance d is given from beam end A. 5.7 Beam Force Detail Summary Table 5.7 Beam Force Details Axial Shear Torsion Bending Beam L/C D (m) Fx (kN) Fy (kN) Fz (kN) Mx (kNm) My (kNm) Mz (kNm) Max Fx 19 82:1.2(DL+LL+(WL- X)+CL) 0.000 609.368 -36.674 -2.237 0.000 0.000 0.000 Min Fx 7 136:0.9(DL) +1.5(WL+X) 3.700 -375.510 -10.087 -0.002 0.000 -0.007 37.322 Max Fy 496 51:1.5(DL+LL+CL) 0.000 296.064 204.181 -0.016 -0.002 -0.575 359.209 Min Fy 497 51:1.5(DL+LL+CL) 0.000 294.074 -204.171 -0.483 -0.000 -0.781 -358.994 Max Fz 119 137:0.9(DL) +1.5(WL+Z) 0.000 -325.092 -0.001 33.872 0.000 -63.387 0.015 Min Fz 116 139:0.9(DL) +1.5(WL-Z) 0.000 -310.913 0.001 -31.339 0.000 58.127 -0.015 Max Mx 427 108:1.5(DL+(WL+X)) 0.000 31.293 -34.860 5.163 3.738 -0.117 -26.938 Min Mx 135 108:1.5(DL+(WL+X)) 0.000 35.268 -29.551 -4.374 -3.740 0.301 -24.634 Max My 33 139:0.9(DL) +1.5(WL-Z) 3.600 -308.957 0.001 9.986 -0.000 58.127 -0.015 Min My 42 137:0.9(DL) +1.5(WL+Z) 3.600 -323.135 -0.001 -10.952 0.000 -63.387 0.016 Max Mz 15 137:0.9(DL) +1.5(WL+Z) 3.600 -213.115 -32.677 0.372 0.000 0.016 879.939 Min Mz 458 137:0.9(DL) +1.5(WL+Z) 0.000 -119.877 -168.001 0.344 0.015 -0.005 -879.936 Table 5.8 Reactions Of Footing 5.8 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX (kN) FY (kN) FZ (kN) MX (kNm) MY (kNm) MZ (kNm) Max FX 3 110:1.5(DL+(WL-X)) 225.300 583.681 -4.780 0.000 0.000 0.000 Min FX 4 108:1.5(DL+(WL+X)) -222.019 577.047 -4.692 0.000 0.000 0.000 Max FY 20 82:1.2(DL+LL+(WL- X)+CL) 166.291 766.687 -36.674 0.000 0.000 0.000 Min FY 4 138:0.9(DL) +1.5(WL-X) 216.968 -567.841 -7.682 0.000 0.000 0.000 Max FZ 21 139:0.9(DL) +1.5(WL-Z) -3.066 -61.918 173.944 0.000 0.000 0.000 Min FZ 3 137:0.9(DL) +1.5(WL+Z) 3.212 -84.234 -180.731 0.000 0.000 0.000 Max MX 1 1:DL 0.053 57.507 -0.547 0.000 0.000 0.000 Min MX 1 1:DL 0.053 57.507 -0.547 0.000 0.000 0.000 Max MY 1 1:DL 0.053 57.507 -0.547 0.000 0.000 0.000 Min MY 1 1:DL 0.053 57.507 -0.547 0.000 0.000 0.000 Max MZ 1 1:DL 0.053 57.507 -0.547 0.000 0.000 0.000 Min MZ 1 1:DL 0.053 57.507 -0.547 0.000 0.000 0.000
  73. 73. GTU TEAM ID 1098 STAAD.PRO RESULTS CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 62 Figure 5.1 Reactions Of Foundation
  74. 74. GTU TEAM ID 1098 REFERENCES CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 63 REFERENCES
  75. 75. GTU TEAM ID 1098 REFERENCES CIVIL ENGINEERING DEPARTMENT, BITS EDU CAMPUS, VARNAMA. 64 1. IS: 456- 2000 2. IS: 800- 2007 3. IS: 875 1987 (part 1 to part 3) 4. SP 16 5. SP 38 6. IS: 1893:2005 part 1 and part 4 7. NPTEL, a online material for students published by IIT-Kharagpur, Design of Steel Structures, Design of welds, Module 24. 8. NPTEL, a online material for the students developed by IIT-Kharagpur, Design of Reinforced concrete structures, Design of Footings, Module27. 9. “Design of Steel structures”, Ramachandra Vol 1 & Vol 2, Standard Book House. 10. “Design of Steel Structures”, Dayaratnam, S.Chand Publications. 11. “Design of Steel structures”, N.Subramanian Based on the limit state design as per the latest indian standard code IS 800:2007

×