Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Ecuaciones diferenciales

217 views

Published on

Matematicas avanzadas

Published in: Education
  • Be the first to comment

Ecuaciones diferenciales

  1. 1. Ecuaciones Diferenciales Matemáticas Avanzadas I Lic.: Edgar Gerardo Mata Ortiz Michelle Pamela García Morales 7°”A” T.M
  2. 2. Ecuaciones Diferenciales  Conceptos Básicos: Es una expresión que involucra a una función desconocida y sus derivadas por ejemplo: Y + y´ = 0  Clasificación de las ecuaciones Diferenciales: Ecuación Diferencial Ordinaria. Ecuación Diferencial Parcial.  Orden de una Ecuación Diferencial El orden de la derivada máximo que aparece en la ecuación: Y´ significa derivada de Y. Y¨ significa segunda derivada.
  3. 3.  Solución de una ecuación diferencial: La solución de una ecuación diferencial en una función desconocida “y” y la variable independiente “x” definida en un intervalo y es una función y que satisface la ecuación diferencial para todos los valores de x en el intervalo dado. Y¨+ 4y = 0
  4. 4. Solución: Y= sen2x + cos2x Y´ = 2cos2x – 2sen2x Y¨= 2 (-sen2x)(2) – 2 (cos2x)(2) Y¨= - 4sen2x – 4cos2x Comprobación y¨+4y = 0 - 4sen2x – 4cos2x+ 4 (sen2x+cos2x) = 0 - -4sen2x – 4cos2x + 4sen2x + 4cos2x = 0
  5. 5.  Y¨ + 4y = 0 Y= 5sen2x + 3cos2x Y´= 5(cos2x)(2) + 3(-sen2x) (2) Y´= 10(cos2x) – 6sen2x Y¨= - 20sen2x – 12cos2x Comprobación: Y¨ + 4y = 0 y= - 20sen2x – 12cos2x + 4 (5sen2x + 3cos2x) Y= -20sen2x – 12cos2x + 20sen2x + 12cos2x = 0 Estas dos soluciones se llaman soluciones particulares, pero lo que generalmente se obtiene es la solución general: Y = C1 sen2x + C2 cos2x
  6. 6.  Comprobar si es la solución que: Y= x2 – 1 es solución de (y´)4 + y2 = - 1 Y´= 2x No es la solución : (2x)4 + ( x2 – 1 )2 = - 1 Y´+ y2 = 0 - 1 푥2 + ( 1 푥 )2 = 0 Y = 1 푥 = x -1 - 1 푥2 + 1 푥2 = 0 y´= - 1x-2 Y= −1 푥2
  7. 7.  Y = e2x Solución : y¨ + y´- 6y = 0 Y´= 2 e2x Y¨ = 4 e2x Comprobación : 4 e2x + 2 e2x - 6(e2x) = 0 6 – 6 = 0
  8. 8.  Y = e-2x + e3x Solución: y¨ - y´ - 6y = 0 Y´= -2 e-2x + 3e3x Y¨ = 4 e-2x + 9 e3x Comprobación: -4 e-2x + 9 e3x – (- 2 e-2x + 3 e3x )- 6(e-2x + e3x ) 6 e-2x + 6 e3x - 6 e-2x - 6 e3x = 0
  9. 9.  Y = x2 + ex + e-2x Solución : y¨ + y´- 2y = 2(1+ x - x2 ) Y´= 2x + ex + (-2e-2x ) Y¨ = 2 + ex + 4e-2x Comprobación: 2 + ex + 4e-2x + 2x + ex + (-2e-2x ) – 2 (x2 + ex + e-2x ) 2(1+ x - x2 ) = 2(1+ x - x2 ) 2 x2 - 2 ex - 2 e-2x
  10. 10.  Y = C1 e2x + C2 (xe2x) Solución : y¨ - 4y´ + 4y = 0 Y´= 2 C1 e2x + 2 C2 xe2x + C2e2x Y¨= 4 C1 e2x + 4 C2 xe2x + 2 C2e2x + 2C2e2x Comprobación : 4 C1 e2x + 4 C2 xe2x + 2 C2e2x + 2C2e2x - 4(2 C1 e2x + 2 C2 xe2x + C2e2x ) + 4 (C1 e2x + C2 (xe2x)) = 0 4 C1 e2x - 8 C1 e2x + 4 C1 e2x + 4 C2 xe2x + 4 C2 xe2x - 8 C2 xe2x - 4 C2e2x - 4 C2e2x = 0
  11. 11. Ecuaciones diferenciales por separación de variables  Ecuaciones diferenciales con variables separables: 푑푦 푑푥 = 푦 푥 푑푦 푦 = 푑푥 푥 ln 푦 = ln 푥 + ln 퐶푖 ln 푦 = ln 퐶푖 x Aplicando anti-logaritmo 푦 = 퐶푖푥
  12. 12.  Comprobación: 푦 = 퐶푖푥 푑푦 푑푥 = 퐶푖 Sustituyendo: 푑푦 푑푥 = 푦 푥 퐶푖 = 퐶푖푥 푥 퐶푖 = 퐶푖 푑푦 푑푥 = 푥 푦 푦푑푦 = 푥푑푥 푦2 2 = 푥2 2 + 퐶1 2 2 푦2 = 푥2 + 퐶1
  13. 13. Ecuaciones diferenciales exactas  푥2 + 2푥푦 + 푥 푑푥 + 푦2dy = 0 푀 = 푋2 + 2푥푦 + 푥 푁 = 푦2 ∂ 푀 ∂ 푁 =2푥 =0 ∂ 푦 ∂ 푥 5푥 + 4푦 푑푥 + 4푥 − 8푦3 푑푦 = 0 5푥푑푥 + 4푦푑푥 + 4푥푑푦 − 8푦3푑푦 = 0 푥 5푑푥 + 4푑푦 + 4푦 푑푦 − 2푦2푑푦 = 0 No es posible separar las variables, por lo que es necesario buscar otro método. Formula : ∂ 푀 ∂ 푦 = ∂ 푁 ∂ 푥
  14. 14.  푀 = 5푥 + 4푦 푁 = 4푥 − 8푦3 ∂ 푀 ∂ 푁 = 4 =4 ∂ 푦 ∂ 푥 Si es una ecuación diferencial exacta por que : ∂ 푀 ∂ 푦 = 4 es igual a ∂ 푁 ∂ 푥 =4
  15. 15. 1.- 푥2 + 푦2 + 푥 푑푥 + 푥푦푑푦 = 0 푀 = 푥2 + 푦2 + 푥 푁 = 푥푦 ∂ 푀 ∂ 푁 = 2푦 =푦 ∂ 푦 ∂ 푥 No es exacta porque: ∂ 푀 ∂ 푦 = 2푦 no es igual ∂ 푁 ∂ 푥 =푦  Sin embargo, a veces es posible encontrar un factor ( que llamamos factor integrante), el cual al multiplicarse por la ecuación diferencial la convierte en exacta. Para encontrar este factor integrante podemos utilizar la siguiente formula:  휕푀 휕푦 − 휕푁 휕푥 푁 = 2푦−푦 푥푦 = 푦 푥푦 = 1 푥 Encontrar factor integrante
  16. 16.  Ahora utilizaremos este resultado para obtener el factor integrante por medio de la expresión: 휇 푥 = 푒 푔 푥 푑푥 = 푒 1 푥 푑푥 푒 푑푥 푥 푒푙푛푥 = 푥 Ahora multiplicaremos la ecuación diferencial original por este factor integrante, y el resultado de la multiplicación será una ecuación diferencial exactas. 푥2 + 푦2 + 푥 푑푥 + 푥푦푑푦 = 0 푥 푥3 + 푥푦2 + 푥2 푑푥 + 푥2푦푑푦 = 0 푀 = 푥3 + 푥푦2 + 푥2 푁 = 푥2푦 ∂ 푀 ∂ 푁 =2푥푦 ∂ 푦 ∂ 푥 = 2푥푦
  17. 17.  A continuación aplicamos el método de solución de ecuaciones diferenciales exactas: Integramos: 푥3 + 푥푦2 + 푥2 푑푥 푥3 + 푥푦2 + 푥2 푑푥 = 푥3푑푥 + 푦2 푥푑푥 + 푥2푑푥 푥4 4 + 푦2 푥2 2 + 푥3 3 + 푔 푦 푓 = 푥4 4 + 푦2 푥2 2 + 푥3 3 + 푔 푦  Solo falta determinar el valor g(y).  Para determinar el valor g(y) derivamos la función f encontrada respecto a y. 휕푓 휕푦 = 2푦 푥2 2 + 푔´ 푦 ∴ 휕푓 휕푦 = 푥2푦 + 푔 푦 Este resultado se iguala con N
  18. 18.  푥2푦 + 푔 푦 = 푥2푦 Simplificando:  +푔´ 푦 = 푥2푦- 푥2푦 푔´ 푦 =0  Si 푔´ 푦 =0 entonces 푔 푦 = C1  Por lo tanto la función buscada es :  푓 = 푥4 4 + 푦2 푥2 2 + 푥3 3 + 퐶1  Y la solución se obtiene igualando esta función a una constante C2:  푥4 4 + 푦2 푥2 2 + 푥3 3 + 퐶1 = 퐶2  푆푖푚푝푙푖푓푖푐푎푛푑표 푥4 4 + 푥2푦2 2 + 푥3 3 + 퐶 Multiplicando por 12 3푥4 + 4푥3 + 6푥2푦2 + 퐶
  19. 19.  2.- 3푥2 + 푦2 푑푥 − 2푥푦푑푦 = 0 푀 = 3푥2 + 푦2 푁 = −2푥푦푑푦 휕푀 휕푁 = 2y = −2y 휕푦 휕푋 No son exactas por lo cual se aplica la formula para encontrar el factor integrante: 휕푀 휕푁 − 휕푦 휕푥 푁 = 2푦−(−2푦) −2푥푦 = 2푦+2푦 −2푥푦 = 4푦 −2푦 = −2 푥 휇 푥 = 푒 푔 푥 푑푥 = 푒 −2 푥 푑푥 푒−2 푑푥 푥 푒푙푛푥 − 2 = 푥−2 = 1 푥2 3푥2 + 푦2 푑푥 − 2푥푦푑푦 = 0 1 푥2 3 + 푦2 푥2 푑푥 − 2푦 푥 푑푦 = 0
  20. 20.  푀 = 3 + 푦2 푁 = −2푦 푥2 푥  휕푀 휕푦 = 2푦 푥2 푢 = −2푦 푣 = 푥 푣 푑푢 푑푥 −푢 푑푣 푑푥 푣2 푑푢 푑푥 = 0 푑푣 푑푥 = 1 휕푁 휕푥 = 푥 0 − 2 −2푦 (1) (푥)2 휕푁 휕푥 = 2푦 푥2
  21. 21.  Integramos : 3 + 푦2 푥2 dx 3 + 푦2 푥2 dx =3 푑푥 + 푦2 푑푥 푥2 = 3푥 + 푦2 푥−2 푓 = 3푥 + 푦2 푥−1 −1 + 푔 푦 푓 = 3푥 − 푦2 푥 + 푔 푦 Determinar : 푔 푦 휕푓 휕푦 = − 2푦 푥 + 푔´ 푦 − 2푦 푥 + 푔´ 푦 =− 2푦 푥 푔´ 푦 =− 2푦 푥 + 2푦 푥 = 푔´ 푦 =0
  22. 22. 푓 = 3푥 − 푦2 푥 + 퐶1 푠표푙푢푐푖표푛: 3푥 − 푦2 푥 + C1 = C2 3푥 − 푦2 푥 = C 푥 3푥2 − 푦2 = 퐶푥

×