2012 01 23_pecs_kang

357 views

Published on

Geologic Sequestration of CO2 and Leakage through Faults by Mary Kang

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
357
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

2012 01 23_pecs_kang

  1. 1. Geological  Sequestra0on  of  CO2   and  Leakage  through  Faults   PECS  Student  Dinner  Presenta0on   Mary  Kang   Civil  and  Environmental  Engineering   Advisor:  Michael  Celia   January  23,  2012  
  2. 2. Outline  •  Carbon  Capture  and  Storage   –  Why  CCS?   –  CCS  issues   –  Geological  storage  of  CO2   –  Modeling  CO2  injec0on/migra0on/leakage   –  Faults  and  CO2  storage  •  My  research   –  Combined  analy0cal-­‐numerical  mul0-­‐scale  modeling   of  two-­‐phase  flow  in  basins  containing  faults  
  3. 3. What  is  CCS?  Why  CCS?  
  4. 4. Why  CCS?  •  To  combat  climate  change,  need  to  implement   a  porTolio  of  strategies   –  Given  our  current  dependence  on  fossil  fuels,  CCS   at  a  large  scale  is  a  necessary  bridge  solu0on   IEA,  2011  
  5. 5. Carbon  Capture  and  Storage  (CCS)  Issues  •  Commercially-­‐viable?  At  what  scale?  •  Economics:  Cost,  Free-­‐trade,  Taxes…  •  Societal  acceptance  •  Developed  vs.  developing  countries                …   How  can  CCS  be  made  part  of  a  commercially-­‐viable,  integrated   sustainable  and  secure  energy  system?   Should  CCS  be  mandatory  in  the  developed  world?   Is  the  general  public  informed  enough  to  make  decisions  on  climate  change?   …  
  6. 6. Should  CCS  be  mandatory  in  the  developed   world?  
  7. 7. Survey  at  IEAGHG  CCS  Summer  School  Should CCS be mandatory in the developed world? 64%YES 36% NO *Based  on  a  survey  of  72  IEAGHG  CCS  Summer  School  par0cipants.  
  8. 8. Survey  Results  by  Beverage   Preferences  74%YES 50%YES 65%YES26% NO 50% NO 35% NO*Based on a survey of 72 IEAGHG CCS Summer School participants.
  9. 9. Survey  Results  by  Na0onality   DEVELOPED DEVELOPING 54%YES 80%YES 46% NO 20% NO*Based on a survey of 72 IEAGHG CCS Summer School participants.
  10. 10. Is  the  general  public  informed  enough  to  make   decisions  on  climate  change?  
  11. 11. ZEP,  2010  What  do  I  know?  What  do  I  care?  Polls   Percep(ons  and  beliefs   42%   believe in climate change, down from 62% in 2006 Der  Spiegel  (2010)   26%   believe climate change is happening & largely man-made, down from 41% in 2009 BBC  (2010)   11  
  12. 12. Geological  Storage  of  CO2    •  Op0ons  are:   –  Unmineable  coal  seams   –  Depleted  oil  and  gas  reservoirs   –  Saline  aquifers   IPCC,  2005  
  13. 13. Prac0cal  Ques0ons  for  CO2  Storage  in  Saline  Aquifers  1.  What  is  the  spa0al  extent  of  the  CO2  plume,   and  the  extent  of  the  pressure  perturba0ons,  as   a  func0on  of  0me,  during  and  aher  the   injec0on  period?  2.  What  frac0on  of  the  injected  CO2  and  displaced   brine  will  leak  out  of  the  injec0on  forma0on?     And  where  will  the  leaked  fluid(s)  go?  3.  What  is  the  overall  long-­‐term  fate  of  the   injected  CO2?  
  14. 14. The  Leakage  Problem  •  To  implement  CCS  at  a   large  scale  using   geological  storage  of  CO2,   –  Need  to  quan0fy  risk  of   leakage  through   Fault concentrated  pathways   Upward Flow (i.e.  abandoned  wells  and   faults)  in  basins   Gasda  et  al.,  2004  
  15. 15. Modeling  CO2  and  Brine  in  Geologic  Forma0ons   Geologic  forma@ons  are  layered.   Combined  analy0cal-­‐numerical  mul0-­‐scale  modeling  
  16. 16. Modeling  CO2  and  Brine  in  Geologic  Forma0ons   Basin-­‐scale  flow  and  leakage  dynamics  should  be  modeled  at  different  scales.   Coarse-­‐Scale   Numerical  Model   1" …   n" n" 1" Fine-­‐Scale   Analy0cal  Models   Combined  analy0cal-­‐numerical  mul0-­‐scale  modeling   16  
  17. 17. Faults   •  Defini0on:   A  fault  is  a  planar   feature  or   discon0nuity  in  a   volume  of  rock,   across  which  there   has  been  significant   displacement  as  a   result  of  earth   movement.   hjp://en.wikipedia.org/wiki/File:Faille_des_Causses_depuis_Bedarieux.dsc02071.cr 17   opped.jpg  
  18. 18. Role  of  Faults  •  Need  for  a  tool  to  evaluate  poten0al  for  CO2   leakage  through  fault  •  Considera0ons  for  development   Faulkner  et  al.,  2010   –  Uncertain0es  in  fault  proper0es   –  Mul0-­‐scale  aspect  of  the  problem   Area 170,000 km2 (65,000 mi2) Flodin  et  al.,  2001   hjp://news.medill.northwestern.edu/chicago/news.aspx?id=155598    
  19. 19. My  Research  Objec0ve  •  Develop  a  computa0onal  tool  that  can   evaluate  poten0al  for  CO2  leakage  through   faults  for  use  in  basin-­‐scale  models  
  20. 20. My  Research  Ques0ons  1.  How  can  faults  be  conceptualized  to   represent  the  flow  field  around  the  fault?      2.  How  can  the  model(s)  developed  to  answer   Ques0on  1  be  integrated  into  a  large-­‐scale   numerical  model?      3.  What  are  the  barriers  to  applica0on  of  the   model  to  real  problems  (i.e.  in  CCS)?    And   how  can  they  be  addressed?    
  21. 21. Fault  Conceptualiza0on:    1-­‐D  Upconing  for  Highly  Conduc0ve  Faults  Allowing  ver0cal  non-­‐equilibrium,   y houter fault x houter vertical equilibrium 21  
  22. 22. Upconing  Results   =  0.1  m2/d   =  1.0  m2/d   =  0   =  0   0 Thickness of lighter fluid, h [m] 20 =  1.6  m2/d   =  10.0  m2/d   40 =  0.30 (full), =  0   0.32 (simplified) and 60 0.22 (Muskat)   Full ODE 80 Simplified transcendental equation Muskat approximation 100 100 200 300 400 500 Distance from fault [m] 22  
  23. 23. A  Way  to  Represent  Faults  in  Basin-­‐Scale  Models   Coarse-­‐Scale   Numerical  Model   1" …   n" n" 1" Fine-­‐Scale   Analy0cal  Models   Combined  analy0cal-­‐numerical  mul0-­‐scale  modeling   23  
  24. 24. A  Fine-­‐Scale  Model •  Reconstruc0on   ¯ ¯ hp h0 hf ault pf ault –     p → pf ault ¯ Top   –   h   → h0     ¯ View  •  Flow  to  fault   Solve  Eqns   –  1D  upconing  solu0on   Simultaneously  •  Flow  through  fault   –  1D  two-­‐phase  Darcy  flow   cap   cap   24  
  25. 25. Reconstruc0on  •  Take  the  coarse-­‐scale  solu0on  and  reconstruct   some  approxima0on  of  the  fine-­‐scale  solu0on   for  a  given  0me  step.   R Coarse-­‐Scale   p ¯ ¯ p(x, z) Reconstructed   ˆ SBlock  Average   Qα α Fine-­‐Scale   ˆ h(x) Model   C Compression   25  
  26. 26. Sample  Results   1%" !"#"$%&()*"+"$,)%(-" Leakage  567893":;)[m2/d]   ./"#"%0000$" 1%" Flowing   34rate   <=>" Dense  Fluid   Case   1%" !"#"1%2(-0*"+"10%$" ./"#"%0$,)0" %1" 1" 1$" 11" 11$" 1)" 1)$" Coarse-­‐scale  pressure  [bar]   p :?6@>" 26   z =1
  27. 27. Summary  •  CCS   –  Given  our  current  dependence  on  fossil  fuels,  must   deploy  CCS  at  large  scale   –  Technical,  social,  economical  barriers   –  CO2  storage  poten0al  in  saline  aquifers  is  large   –  Models  designed  to  quan0fy  risks  associated  with   leakage  are  needed    •  Leakage  through  faults     –  A  combined  analy0cal-­‐numerical  mul0-­‐scale  model   given  highly  conduc0ve  faults  ac0ng  as  leakage   conduits  in    
  28. 28. Thank  you!  

×