Flexible Electronics

5,926 views

Published on

Presented for TTI Vanguard "Shift Happens" conference (http://bit.ly/TTIVshifthappens) visit to PARC, this is an overview of an all-printed and therefore low-cost, disposable sensor that conforms to the curvature of a helmet.

Developed for DARPA to monitor soldiers' blast exposure and prevent traumatic brain injury, the technology can be applied to multiple biomedical and other applications.

Published in: Technology, Business
0 Comments
11 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
5,926
On SlideShare
0
From Embeds
0
Number of Embeds
13
Actions
Shares
0
Downloads
0
Comments
0
Likes
11
Embeds 0
No embeds

No notes for slide

Flexible Electronics

  1. 1. Printed Flexible Electronics and Sensors Ana Claudia Arias, Ph.D. Printed Electronic Devices Electronic Materials and Devices Laboratory  s =  sl +  l . cos   s =  sl +  l . cos 
  2. 2. Motivation for printed flexible electronics <ul><li>Wish list </li></ul><ul><li>Conformal </li></ul><ul><li>Foldable </li></ul><ul><li>Unbreakable </li></ul><ul><li>Light weight </li></ul><ul><li>Thin </li></ul><ul><li>Less expensive – high performance </li></ul><ul><li>Unique and customized </li></ul><ul><li>New product development </li></ul><ul><li>Science/Engineering argument </li></ul><ul><li>New materials </li></ul><ul><li>New interfaces </li></ul><ul><li>New problems </li></ul><ul><li>New physics, new chemistry </li></ul><ul><li>New device fabrication techniques – cool engineering </li></ul><ul><li>Many applications: nano, solar, bio </li></ul><ul><li>Scientific breakthrough </li></ul><ul><li>Commercialization </li></ul><ul><li>Materials, processing and flexible substrate integration can be a challenge </li></ul><ul><li>Materials stability and performance inferior to well established silicon industry – first product needed to establish credibility </li></ul><ul><li>Manufacturing tools need to be adapted to handle flexible substrates </li></ul><ul><li>Risk takers and early adopters needed </li></ul><ul><li>No flexible electronic product commercially available </li></ul><ul><li>Where flexible electronics is really needed/wanted? </li></ul>
  3. 3. Amazon Kindle A lot of activity on displays: products on the market <ul><li>Several products available </li></ul><ul><li>All rigid products </li></ul><ul><li>Backplane based on a-Si technology </li></ul><ul><li>Display media from E-ink </li></ul><ul><li>Low power consumption </li></ul><ul><li>Content oriented business model most successful </li></ul>
  4. 4. <ul><li>Several flexible display demonstrations </li></ul><ul><li>Full color and monochromatic </li></ul><ul><li>Multiple backplanes and front planes used </li></ul><ul><li>Integration with a product needed </li></ul>Flexible display demonstrators PARC Lucent
  5. 5. Printed electronics applications <ul><li>Some examples </li></ul>Duracell: Battery tester Cypak: Intelligent Pharmaceutical Packaging PolyIC: RFID CSG: via etching Plastic Logic: e-paper CDT: OLED displays Konarka: Solar cell Pelikon: EL displays Power Paper: battery
  6. 6. Approaches: From inorganic rigid materials to flexible systems Courtesy of Prof. John Rogers <ul><li>Inorganic-based flexible structures: </li></ul><ul><li>New processing methods allow fabrication of flexible structures </li></ul><ul><li>Control of materials performance under low temperature processing </li></ul><ul><li>Stamping and pick and place allow large area fabrication </li></ul><ul><li>High performance systems </li></ul>
  7. 7. Approaches: Organic and inorganic materials <ul><li>Processed at low temperature </li></ul><ul><li>Many materials sputtered at room temperature </li></ul><ul><li>Others can be processed from solution </li></ul><ul><li>Organic materials are inherently flexible </li></ul><ul><li>Compatible with flexible substrates </li></ul><ul><li>Opens up new manufacturing opportunities </li></ul>
  8. 8. <ul><ul><li>New and unique science problems </li></ul></ul><ul><ul><li>Lower capital investment </li></ul></ul><ul><ul><li>Large area capability </li></ul></ul><ul><ul><li>Rigid or flexible substrates </li></ul></ul><ul><ul><li>Extremely thin </li></ul></ul><ul><ul><li>Environmentally friendly </li></ul></ul><ul><ul><li>Less photolithography, vacuum </li></ul></ul><ul><ul><li>Short turnaround/cycle time </li></ul></ul><ul><ul><li>Customization ease </li></ul></ul>PARC’s approach: Solution-based electronics Electronic components printed like documents are printed
  9. 9. From photolithography to additive processing Many processing steps and a lot of materials waste One step for patterning and deposition Additive printing Photo - lithography resist Deposit film resist Deposit film
  10. 10. Thin-film transistors are the building blocks for electronics <ul><li>TFT is a switch! </li></ul><ul><li>high I on (~mA) </li></ul><ul><li>low I off (~pA) </li></ul>semiconductor Display pixel via layer drain pad gate line media dielectric data line Top view gate line data line pixel pad ~ 300 mm TFT
  11. 11. All additive printed arrays <ul><ul><li>PEN substrate </li></ul></ul><ul><ul><li>Printed nanoparticle metals </li></ul></ul><ul><ul><li>Polymer dielectric </li></ul></ul><ul><ul><li>Polymer semiconductor (PQT + others) </li></ul></ul><ul><ul><li>Reflective display format </li></ul></ul>Gate line Data line Semiconductor Pixel pad 340 um 680 um PARC has demonstrated all-printed TFT backplanes for displays
  12. 12. Technology platform creation: Working with clients to accelerate their entry to market
  13. 13. Sensor tape project <ul><li>$5M funding for 3 year project to develop: </li></ul><ul><li>Printed sensors: accelerometers, acoustic, pressure and temperature </li></ul><ul><li>Light sensors </li></ul><ul><li>Non-volatile printed memory </li></ul><ul><li>Printed CMOS </li></ul><ul><li>Deliver prototype capable of monitoring mechanical shock . Data is stored in the printed memory </li></ul><ul><li>This technology can be used to monitor vital signs in patients – civilian applications </li></ul>
  14. 14. Circuit integration with printed sensors MEMS sensors Printed organic amplifiers After write V sd = -5,-20V Pressure signal after amplifier Pressure signal without amplifier Use printed amplifier to boost write voltage into memory cell V DD V out V in bias Switch TFTs memory TFT
  15. 15. To subscribe to the PARC Innovations Update e-newsletter or blog, or to follow us on Twitter, go to http://www.parc.com/about/subscribe.html For more information, please contact: Ana Arias ana.arias@ parc.com Jennifer Ernst, Business Development [email_address]

×